Comparison of programming languagesProgramming languages are used for controlling the behavior of a machine (often a computer). Like natural languages, programming languages follow rules for syntax and semantics. There are thousands of programming languages and new ones are created every year. Few languages ever become sufficiently popular that they are used by more than a few people, but professional programmers may use dozens of languages in a career. Most programming languages are not standardized by an international (or national) standard, even widely used ones, such as Perl or Standard ML (despite the name).
Sémantique des langages de programmationEn informatique théorique, la sémantique formelle (des langages de programmation) est l’étude de la signification des programmes informatiques vus en tant qu’objets mathématiques. Comme en linguistique, la sémantique, appliquée aux langages de programmation, désigne le lien entre un signifiant, le programme, et un signifié, objet mathématique. L'objet mathématique dépend des propriétés à connaître du programme. La sémantique est également le lien entre : le langage signifiant : le langage de programmation le langage signifié : logique de Hoare, automates.
Théorie des langages de programmationvignette|La lettre grecque minuscule λ (lambda) est un symbole non officiel de la théorie des langages de programmation. Cet usage dérive du lambda-calcul, un modèle de calcul introduit par Alonzo Church dans les années 1930 et largement utilisé par les chercheurs en langage de programmation. Il orne la couverture du texte classique Structure et interprétation des programmes informatiques, et apparaît dans le titre des fameux Lambda Papers de 1975 à 1980, écrits par Gerald Jay Sussman et Guy Steele, les développeurs du langage de programmation Scheme.
SemanticsSemantics () is the study of reference, meaning, or truth. The term can be used to refer to subfields of several distinct disciplines, including philosophy, linguistics and computer science. In English, the study of meaning in language has been known by many names that involve the Ancient Greek word σῆμα (sema, "sign, mark, token"). In 1690, a Greek rendering of the term semiotics, the interpretation of signs and symbols, finds an early allusion in John Locke's An Essay Concerning Human Understanding: The third Branch may be called σημειωτική [simeiotikí, "semiotics"], or the Doctrine of Signs, the most usual whereof being words, it is aptly enough termed also λογικὴ, Logick.
Science formelleLes sciences formelles (ou sciences logico-formelles) explorent déductivement, selon des règles de formation et de démonstration, des systèmes axiomatiques. Les sciences formelles regroupent les mathématiques, la logique et l'informatique théorique. L'algèbre est la branche des mathématiques qui étudie les structures algébriques, indépendamment de la notion de limite (rattachée à l'analyse) et de la notion de représentation graphique (rattachée à la géométrie).
Démonstration automatique de théorèmesLa démonstration automatique de théorèmes (DAT) est l'activité d'un logiciel qui démontre une proposition qu'on lui soumet, sans l'aide de l'utilisateur. Les démonstrateurs automatiques de théorème ont résolu des conjectures intéressantes difficiles à établir, certaines ayant échappé aux mathématiciens pendant longtemps ; c'est le cas, par exemple, de la , démontrée en 1996 par le logiciel EQP.
Formal specificationIn computer science, formal specifications are mathematically based techniques whose purpose are to help with the implementation of systems and software. They are used to describe a system, to analyze its behavior, and to aid in its design by verifying key properties of interest through rigorous and effective reasoning tools. These specifications are formal in the sense that they have a syntax, their semantics fall within one domain, and they are able to be used to infer useful information.
Système formelUn système formel est une modélisation mathématique d'un langage en général spécialisé. Les éléments linguistiques, mots, phrases, discours, etc., sont représentés par des objets finis (entiers, suites, arbres ou graphes finis...). Le propre d'un système formel est que la correction au sens grammatical de ses éléments est vérifiable algorithmiquement, c'est-à-dire que ceux-ci forment un ensemble récursif.
Démonstration formelleUne démonstration formelle est une séquence finie de propositions (appelées formules bien formées dans le cas d'un langage formel) dont chacun est un axiome, une hypothèse, ou résulte des propositions précédentes dans la séquence par une règle d'inférence. La dernière proposition de la séquence est un théorème d'un système formel. La notion de théorème n'est en général pas effective, donc n'existe pas de méthode par laquelle nous pouvons à chaque fois trouver une démonstration d'une proposition donnée ou de déterminer s'il y en a une.
Vérification formelleIn the context of hardware and software systems, formal verification is the act of proving or disproving the correctness of intended algorithms underlying a system with respect to a certain formal specification or property, using formal methods of mathematics. Formal verification can be helpful in proving the correctness of systems such as: cryptographic protocols, combinational circuits, digital circuits with internal memory, and software expressed as source code.