Mean squared prediction errorIn statistics the mean squared prediction error (MSPE), also known as mean squared error of the predictions, of a smoothing, curve fitting, or regression procedure is the expected value of the squared prediction errors (PE), the square difference between the fitted values implied by the predictive function and the values of the (unobservable) true value g. It is an inverse measure of the explanatory power of and can be used in the process of cross-validation of an estimated model.
Repliement de spectrethumb|300px|Ce graphique démontre le repliement du spectre d'un signal sinusoïdal de fréquence f = 0,9, confondu avec un signal de fréquence f = 0,1 lors d'un échantillonnage de période T = 1,0. Le repliement de spectre (aliasing en anglais) est un phénomène qui introduit, dans un signal qui module une fréquence porteuse ou dans un signal échantillonné, des fréquences qui ne devraient pas s'y trouver, lorsque la fréquence porteuse ou la fréquence d'échantillonnage sont inférieures à deux fois la fréquence maximale contenue dans le signal.
Noyau de Dirichletthumb|upright=2|Tracé des premiers noyaux de Dirichlet. En mathématiques, et plus précisément en analyse, le n-ième noyau de Dirichlet — nommé ainsi en l'honneur du mathématicien allemand Johann Dirichlet — est le polynôme trigonométrique défini par : C'est donc une fonction 2π-périodique de classe . Elle vérifie de plus : si x n'est pas un multiple entier de 2π, alors ; si x est un multiple entier de 2π, alors . Le noyau de Dirichlet permet notamment d'améliorer la convergence des séries de Fourier.
Convergence of Fourier seriesIn mathematics, the question of whether the Fourier series of a periodic function converges to a given function is researched by a field known as classical harmonic analysis, a branch of pure mathematics. Convergence is not necessarily given in the general case, and certain criteria must be met for convergence to occur. Determination of convergence requires the comprehension of pointwise convergence, uniform convergence, absolute convergence, Lp spaces, summability methods and the Cesàro mean.
Stationary incrementsIn probability theory, a stochastic process is said to have stationary increments if its change only depends on the time span of observation, but not on the time when the observation was started. Many large families of stochastic processes have stationary increments either by definition (e.g. Lévy processes) or by construction (e.g. random walks) A stochastic process has stationary increments if for all and , the distribution of the random variables depends only on and not on .
Unit rootIn probability theory and statistics, a unit root is a feature of some stochastic processes (such as random walks) that can cause problems in statistical inference involving time series models. A linear stochastic process has a unit root if 1 is a root of the process's characteristic equation. Such a process is non-stationary but does not always have a trend. If the other roots of the characteristic equation lie inside the unit circle—that is, have a modulus (absolute value) less than one—then the first difference of the process will be stationary; otherwise, the process will need to be differenced multiple times to become stationary.