Concept

Stationary increments

In probability theory, a stochastic process is said to have stationary increments if its change only depends on the time span of observation, but not on the time when the observation was started. Many large families of stochastic processes have stationary increments either by definition (e.g. Lévy processes) or by construction (e.g. random walks) A stochastic process has stationary increments if for all and , the distribution of the random variables depends only on and not on . Having stationary increments is a defining property for many large families of stochastic processes such as the Lévy processes. Being special Lévy processes, both the Wiener process and the Poisson processes have stationary increments. Other families of stochastic processes such as random walks have stationary increments by construction. An example of a stochastic process with stationary increments that is not a Lévy process is given by , where the are independent and identically distributed random variables following a normal distribution with mean zero and variance one. Then the increments are independent of as they have a normal distribution with mean zero and variance two. In this special case, the increments are even independent of the duration of observation itself. The concept of stationary increments can be generalized to stochastic processes with more complex index sets . Let be a stochastic process whose index set is closed with respect to addition. Then it has stationary increments if for any , the random variables and have identical distributions. If it is sufficient to consider .

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.