In light of the challenges posed by climate change and the goals of the Paris Agreement, electricity generation is shifting to a more renewable and decentralized pattern, while the operation of systems like buildings is increasingly electrified. This calls ...
In the past years, deep convolutional neural networks have been pushing the frontier of face recognition (FR) techniques in both verification and identification scenarios. Despite the high accuracy, they are often criticized for lacking explainability. The ...
Despite the significant progress in recent years, deep face recognition is often treated as a "black box" and has been criticized for lacking explainability. It becomes increasingly important to understand the characteristics and decisions of deep face rec ...
Despite the huge success of deep convolutional neural networks in face recognition (FR) tasks, current methods lack explainability for their predictions because of their ``black-box'' nature. In recent years, studies have been carried out to give an interp ...
We introduce contextual stochastic bilevel optimization (CSBO) -- a stochastic bilevel optimization framework with the lower-level problem minimizing an expectation conditioned on some contextual information and the upper-level decision variable. This fram ...
State-of-the-art face recognition systems require vast amounts of labeled training data. Given the priority of privacy in face recognition applications, the data is limited to celebrity web crawls, which have issues such as limited numbers of identities. O ...
This contribution argues for the potential of Barr, Khaled and Lessard’s Method for Design Materialization (MDM) as a research through design tool that is specifically suited for new media preservation. Building moreover from the ISEA first and second Summ ...
As an 'early alerting' sense, one of the primary tasks for the human visual system is to recognize distant objects. In the specific context of facial identification, this ecologically important task has received surprisingly little attention. Most studies ...
Integrating various reinforcements into 3D concrete printing (3DCP) is an efficient method to satisfy critical requirements for structural applications. This paper explores an explainable ensemble machine learning (EML) method to predict the bond failure m ...
We propose an image-based elastography method to measure the heterogeneous stiffness inside a cell and its nucleus. It uses a widely accessible setup consisting of plate compression imaged with fluorescence microscopy. Our framework recovers a spatial map ...