Grain growthIn materials science, grain growth is the increase in size of grains (crystallites) in a material at high temperature. This occurs when recovery and recrystallisation are complete and further reduction in the internal energy can only be achieved by reducing the total area of grain boundary. The term is commonly used in metallurgy but is also used in reference to ceramics and minerals. The behaviors of grain growth is analogous to the coarsening behaviors of grains, which implied that both of grain growth and coarsening may be dominated by the same physical mechanism.
Diagramme de VoronoïEn mathématiques, un diagramme de Voronoï est un pavage (découpage) du plan en cellules (régions adjacentes) à partir d'un ensemble discret de points appelés « germes ». Chaque cellule enferme un seul germe, et forme l'ensemble des points du plan plus proches de ce germe que d'aucun autre. La cellule représente en quelque sorte la « zone d'influence » du germe. Le diagramme doit son nom au mathématicien russe Gueorgui Voronoï (1868-1908). Le découpage est aussi appelé décomposition de Voronoï, partition de Voronoï ou tessellation de Dirichlet.
Joint de grainsUn joint de grains est l'interface entre deux cristaux de même structure cristalline et de même composition, mais d’orientation différente. vignette|Microstructure de VT22 () après trempe. L'échelle est en micromètres. vignette|Schéma d'un joint de grain, dont les atomes communs à deux cristaux (orange et bleu) sont représentés en vert. Les joints de grains peuvent se former dans deux cas de figure : lors de la solidification du matériau et par recristallisation, durant certains traitements thermomécaniques.
Centroidal Voronoi tessellationIn geometry, a centroidal Voronoi tessellation (CVT) is a special type of Voronoi tessellation in which the generating point of each Voronoi cell is also its centroid (center of mass). It can be viewed as an optimal partition corresponding to an optimal distribution of generators. A number of algorithms can be used to generate centroidal Voronoi tessellations, including Lloyd's algorithm for K-means clustering or Quasi-Newton methods like BFGS.
Abnormal grain growthAbnormal or discontinuous grain growth, also referred to as exaggerated or secondary recrystallisation grain growth, is a grain growth phenomenon through which certain energetically favorable grains (crystallites) grow rapidly in a matrix of finer grains resulting in a bimodal grain size distribution. In ceramic materials this phenomenon can result in the formation of elongated prismatic, acicular (needle-like) grains in a densified matrix with implications for improved fracture toughness through the impedance of crack propagation.
Farthest-first traversalIn computational geometry, the farthest-first traversal of a compact metric space is a sequence of points in the space, where the first point is selected arbitrarily and each successive point is as far as possible from the set of previously-selected points. The same concept can also be applied to a finite set of geometric points, by restricting the selected points to belong to the set or equivalently by considering the finite metric space generated by these points.
Algorithme de Lloyd-MaxEn algorithmique et en traitement du signal, l’algorithme de Lloyd-Max est un algorithme qui permet de construire le quantifieur scalaire optimal. C'est donc une méthode pour quantifier un signal en une dimension de manière à minimiser la distorsion, mesurée par l'erreur quadratique moyenne. L'optimalité du quantifieur est assurée par deux conditions sur les niveaux de reconstruction et de décision, découvertes par Lloyd en 1957. Il fournit aussi un algorithme, qui permet de construire itérativement le quantifieur optimal.
Simulation de phénomènesLa simulation de phénomènes est un outil utilisé dans le domaine de la recherche et du développement. Elle permet d'étudier les réactions d'un système à différentes contraintes pour en déduire les résultats recherchés en se passant d'expérimentation. Les systèmes technologiques (infrastructures, véhicules, réseaux de communication, de transport ou d'énergie) sont soumis à différentes contraintes et actions. Le moyen le plus simple d'étudier leurs réactions serait d'expérimenter, c'est-à-dire d'exercer l'action souhaitée sur l'élément en cause pour observer ou mesurer le résultat.
Bacterial cell structureThe bacterium, despite its simplicity, contains a well-developed cell structure which is responsible for some of its unique biological structures and pathogenicity. Many structural features are unique to bacteria and are not found among archaea or eukaryotes. Because of the simplicity of bacteria relative to larger organisms and the ease with which they can be manipulated experimentally, the cell structure of bacteria has been well studied, revealing many biochemical principles that have been subsequently applied to other organisms.
Cellule (biologie)vignette|Dessin de « cellules » observées dans des coupes d'écorce d'arbre par Robert Hooke en 1665, à l'origine du nom latin cellula « chambre de moine », ayant aussi le sens de cella « petite chambre, chambrette ». vignette|Dessin d'Edmund Beecher Wilson publié en 1900 dont la légende originale était : « Vue générale de cellules situées à la pointe de croissance d'une racine d'oignon à partir d'une coupe longitudinale agrandie . a. cellules qui ne se divisent pas, avec réseau de chromatine et nucléoles fortement colorés ; b.