Angular momentum couplingIn quantum mechanics, the procedure of constructing eigenstates of total angular momentum out of eigenstates of separate angular momenta is called angular momentum coupling. For instance, the orbit and spin of a single particle can interact through spin–orbit interaction, in which case the complete physical picture must include spin–orbit coupling. Or two charged particles, each with a well-defined angular momentum, may interact by Coulomb forces, in which case coupling of the two one-particle angular momenta to a total angular momentum is a useful step in the solution of the two-particle Schrödinger equation.
Rotation de la Terrevignette|Animation montrant la rotation de la Terre vers l'Est. thumb|Cette photographie en pose longue du ciel nocturne dans l’hémisphère nord au-dessus de l’Himalaya népalais montre les trajectoires apparentes des étoiles lors de la rotation de la Terre. La rotation de la Terre est le mouvement de la Terre sur elle-même autour de l'axe des pôles géographiques qui relie le pôle Nord au pôle Sud. Il a été énoncé pour la première fois par l’astronome grec Philolaos de Crotone, au De plus, la Terre, comme chaque planète du système solaire, tourne autour du Soleil, dans un mouvement appelé la révolution.
Imagerie à grande gamme dynamiqueL'imagerie à grande gamme dynamique (ou imagerie large-gamme) (high-dynamic-range imaging ou HDRI) regroupe un ensemble de techniques numériques permettant de présenter une image fixe ou animée d'une scène qui présente, dans ses diverses parties, des niveaux très différents de luminosité. Une se constitue à partir de pixels auxquels est associé un triplet de valeurs qui en indique la luminosité et la couleur. Le rendu à grande dynamique concerne des fichiers d'origine où les pixels ont plus de valeurs possibles que les écrans ou imprimantes du rendu.
Scalaire (physique)En physique, un scalaire est une grandeur dont la valeur ne dépend que du point auquel on l'évalue et est indépendante du système de coordonnées. Une grandeur scalaire s'oppose à une grandeur vectorielle : la grandeur scalaire a uniquement une valeur mais pas de direction ou de sens. Les mathématiques utilisent la notion de scalaire dans le même sens en algèbre linéaire, indépendamment de toute grandeur physique. Les quantités scalaires sont invariables par rapport aux rotations de coordonnées (et aux transformations de Lorentz en théorie de la relativité).
Scalar field theoryIn theoretical physics, scalar field theory can refer to a relativistically invariant classical or quantum theory of scalar fields. A scalar field is invariant under any Lorentz transformation. The only fundamental scalar quantum field that has been observed in nature is the Higgs field. However, scalar quantum fields feature in the effective field theory descriptions of many physical phenomena. An example is the pion, which is actually a pseudoscalar.
Landau poleIn physics, the Landau pole (or the Moscow zero, or the Landau ghost) is the momentum (or energy) scale at which the coupling constant (interaction strength) of a quantum field theory becomes infinite. Such a possibility was pointed out by the physicist Lev Landau and his colleagues. The fact that couplings depend on the momentum (or length) scale is the central idea behind the renormalization group. Landau poles appear in theories that are not asymptotically free, such as quantum electrodynamics (QED) or φ4 theory—a scalar field with a quartic interaction—such as may describe the Higgs boson.
Étoile fixeL'étoile fixe est une notion aujourd'hui dépassée, mais qui participe à l'histoire de l'astronomie. Durant l'Antiquité et le Moyen Âge, cette notion servait à désigner les astres qui semblaient fixés à la voûte céleste, par opposition aux étoiles errantes. On désignait par étoile fixe (en latin stella fixa) les astres qui semblaient fixés à la voûte céleste. Il s’agit donc des étoiles au sens moderne à l'exception du Soleil. Les étoiles fixes s’opposaient aux étoiles errantes, ou astres errants, lesquels avaient un mouvement relatif apparent par rapport aux étoiles fixes.
Scalar potentialIn mathematical physics, scalar potential, simply stated, describes the situation where the difference in the potential energies of an object in two different positions depends only on the positions, not upon the path taken by the object in traveling from one position to the other. It is a scalar field in three-space: a directionless value (scalar) that depends only on its location. A familiar example is potential energy due to gravity.
Période de révolutionLa révolution ou mouvement de révolution est, en mécanique céleste, un mouvement de translation périodique, circulaire ou elliptique. La période de révolution, aussi appelée période orbitale, est la durée mise par un astre pour accomplir une révolution complète autour d’un autre astre (par exemple une planète autour du Soleil ou un satellite autour d’une planète). Cette période correspond à la durée mise par l'astre concerné pour revenir au même point par rapport à un point donné, ce dernier pouvant être une étoile fixe (période de révolution sidérale), le point équinoxial.