In mathematical physics, scalar potential, simply stated, describes the situation where the difference in the potential energies of an object in two different positions depends only on the positions, not upon the path taken by the object in traveling from one position to the other. It is a scalar field in three-space: a directionless value (scalar) that depends only on its location. A familiar example is potential energy due to gravity.
A scalar potential is a fundamental concept in vector analysis and physics (the adjective scalar is frequently omitted if there is no danger of confusion with vector potential). The scalar potential is an example of a scalar field. Given a vector field F, the scalar potential P is defined such that:
where ∇P is the gradient of P and the second part of the equation is minus the gradient for a function of the Cartesian coordinates x, y, z. In some cases, mathematicians may use a positive sign in front of the gradient to define the potential. Because of this definition of P in terms of the gradient, the direction of F at any point is the direction of the steepest decrease of P at that point, its magnitude is the rate of that decrease per unit length.
In order for F to be described in terms of a scalar potential only, any of the following equivalent statements have to be true:
where the integration is over a Jordan arc passing from location a to location b and P(b) is P evaluated at location b.
where the integral is over any simple closed path, otherwise known as a Jordan curve.
The first of these conditions represents the fundamental theorem of the gradient and is true for any vector field that is a gradient of a differentiable single valued scalar field P. The second condition is a requirement of F so that it can be expressed as the gradient of a scalar function. The third condition re-expresses the second condition in terms of the curl of F using the fundamental theorem of the curl. A vector field F that satisfies these conditions is said to be irrotational (conservative).
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Ce cours traite de l'électromagnétisme dans le vide et dans les milieux continus. A partir des principes fondamentaux de l'électromagnétisme, on établit les méthodes de résolution des équations de Max
Le potentiel vecteur du champ magnétique, ou, plus simplement potentiel vecteur quand il n'y a pas de confusion possible, est une quantité physique assimilable à un champ de vecteurs intervenant en électromagnétisme. Elle n'est pas directement mesurable, mais sa présence est intimement liée à celle d'un champ électrique et/ou d'un champ magnétique. Son unité SI est le kg.C-1.m.s-1. Bien qu'il ait d'abord été introduit uniquement en tant qu'outil mathématique, en mécanique quantique, il a une réalité physique, comme l'a montré l'expérience Aharonov-Bohm.
Le théorème du gradient est un théorème de l'analyse vectorielle qui met en relation l'intégrale de volume du gradient d'un champ scalaire et l'intégrale de surface du même champ. Le théorème est le suivant : Pour démontrer que ces deux vecteurs sont égaux, il suffit de vérifier que leurs produits scalaires par n'importe quel vecteur le sont, en utilisant le théorème de flux-divergence.
In classical mechanics, the gravitational potential at a point in space is equal to the work (energy transferred) per unit mass that would be needed to move an object to that point from a fixed reference point. It is analogous to the electric potential with mass playing the role of charge. The reference point, where the potential is zero, is by convention infinitely far away from any mass, resulting in a negative potential at any finite distance.
In aqueous solutions, a charged surface causes the redistribution of nearby ions. The ion layers formed are known as the electrical double layer (EDL), and are widespread in many systems involving electrochemistry, colloidal science, biomedicine, and energ ...
EPFL2024
, , ,
Investigating the electrical double layer (EDL) structure has been a long-standing challenge and has seen the emergence of several sophisticated techniques able to probe selectively the few molecular layers of a solid/water interface. While a qualitative e ...
ROYAL SOC CHEMISTRY2023
, ,
We present an efficient method to compute diffusion coefficients of multiparticle systems with strong interactions directly from the geometry and topology of the potential energy field of the migrating particles. The approach is tested on Li-ion diffusion ...