Spectrométrie d'absorptionLa spectrométrie d'absorption est une méthode de spectroscopie électromagnétique utilisée pour déterminer la concentration et la structure d'une substance en mesurant l'intensité du rayonnement électromagnétique qu'elle absorbe à des longueurs d'onde différentes. La spectroscopie d'absorption peut être atomique ou moléculaire. Comme indiqué dans le tableau précédent, les rayonnements électromagnétiques exploités en spectroscopie d'absorption moléculaire vont de l'ultraviolet jusqu'aux ondes radio : La couleur d'un corps en transmission (transparence) représente sa capacité à absorber certaines longueurs d'onde.
Spectroscopie laser ultrarapideLa spectroscopie laser ultrarapide est une technique spectroscopique qui utilise des lasers à impulsions ultracourtes pour l'étude de la dynamique sur des échelles de temps extrêmement courtes, de l'attoseconde (10−18 s) à la nanoseconde (10−9 s). Différentes méthodes sont utilisées pour examiner la dynamique des porteurs de charge, des atomes et des molécules. De nombreuses procédures différentes ont été développées pour différentes échelles de temps et différentes plages d'énergie des photons ; quelques méthodes courantes sont énumérées ci-dessous.
Spectrométrie d'absorption atomiquethumb|un spectromètre d'absorption atomique. En chimie analytique, la spectrométrie d'absorption atomique (Atomic absorption spectroscopy en anglais ou SAA) est une technique de spectroscopie atomique servant à déterminer la concentration des éléments métalliques (métaux alcalins, alcalino-terreux, métaux de transition) ainsi que les métalloïdes dans un échantillon. Ceux-ci sont atomisés à l'aide d'une flamme alimentée d'un mélange de gaz ou d'un four électromagnétique.
Cristallographie aux rayons XLa cristallographie aux rayons X, radiocristallographie ou diffractométrie de rayons X (DRX, on utilise aussi souvent l'abréviation anglaise XRD pour X-ray diffraction) est une technique d'analyse fondée sur la diffraction des rayons X par la matière, particulièrement quand celle-ci est cristalline. La diffraction des rayons X est une diffusion élastique, c'est-à-dire sans perte d'énergie des photons (longueurs d'onde inchangées), qui donne lieu à des interférences d'autant plus marquées que la matière est ordonnée.
Spectroscopie des rayons XLa spectroscopie des rayons X rassemble plusieurs techniques de caractérisation spectroscopique de matériaux par excitation par rayons X. Trois familles de techniques sont le plus souvent utilisées. Selon les phénomènes mis en jeu, on distingue trois classes : L'analyse se fait par l'une des deux méthodes suivantes : analyse dispersive en énergie (Energy-dispersive x-ray analysis (EDXA) en anglais) ; analyse dispersive en longueur d'onde (Wavelength dispersive x-ray analysis (WDXA) en anglais).
SpectroscopieLa spectroscopie, ou spectrométrie, est l'étude expérimentale du spectre d'un phénomène physique, c'est-à-dire de sa décomposition sur une échelle d'énergie, ou toute autre grandeur se ramenant à une énergie (fréquence, longueur d'onde). Historiquement, ce terme s'appliquait à la décomposition, par exemple par un prisme, de la lumière visible émise (spectrométrie d'émission) ou absorbée (spectrométrie d'absorption) par l'objet à étudier.
Laser absorption spectrometryLaser absorption spectrometry (LAS) refers to techniques that use lasers to assess the concentration or amount of a species in gas phase by absorption spectrometry (AS). Optical spectroscopic techniques in general, and laser-based techniques in particular, have a great potential for detection and monitoring of constituents in gas phase. They combine a number of important properties, e.g. a high sensitivity and a high selectivity with non-intrusive and remote sensing capabilities.
Spectroscopie térahertz dans le domaine temporelvignette| Impulsion typique mesurée par THz-TDS. En physique, la spectroscopie TéraHertz dans le domaine temporel ( THz-TDS ) est une technique spectroscopique dans laquelle les propriétés de la matière sont sondées avec de courtes impulsions de rayonnement térahertz. Le schéma de génération et de détection est sensible à l'effet de l'échantillon sur l'amplitude et la phase du rayonnement térahertz. En mesurant dans le domaine temporel, la technique peut fournir plus d'informations que la spectroscopie à transformée de Fourier conventionnelle, qui n'est sensible qu'à l'amplitude.
Absorption (optique)L'absorption en optique, ou en électromagnétisme, désigne un processus physique par lequel l'énergie électromagnétique est transformée en une autre forme d'énergie. Au niveau des photons (quanta de lumière), l'absorption représente le phénomène par lequel l'énergie d'un photon est prise par une autre particule, par exemple un électron. Dans ce cas, si l'énergie du photon (, relation de Planck-Einstein) est égale à celle d'un état excité (ou à la différence entre deux états excités), celui-ci sera absorbé via une transition électronique d'un électron de valence.
Diffusion des rayons XLa diffusion des rayons X (X-ray scattering en anglais) est une technique d'analyse basée sur la diffusion des ondes de rayons X par une substance. Alors que la diffraction des rayons X ne peut être utilisée qu'avec des substances cristallines, la diffusion des rayons X peut être utilisée pour des substances cristallines ou amorphes. La diffusion des rayons X est basée sur l'interaction des rayons X avec les électrons des atomes. La diffusion des rayons X peut être élastique ou inélastique.