Complémentarité (acide nucléique)vignette|A=T : deux liaisons hydrogène. vignette|G≡C : trois liaisons hydrogène. vignette|Séquences complémentaires. En biologie moléculaire, la complémentarité de deux séquences d'acides nucléiques fait référence à la possibilité d'apparier les bases nucléiques qui constituent chacune d'elles. C'est typiquement le cas par exemple des deux brins formant une double hélice d'ADN. Cette propriété est à la base de la réplication de l'ADN, de sa réparation, de sa transcription en ARN, et de la traduction de ce dernier en protéines.
Liaison phosphodiesterIn chemistry, a phosphodiester bond occurs when exactly two of the hydroxyl groups () in phosphoric acid react with hydroxyl groups on other molecules to form two ester bonds. The "bond" involves this linkage . Discussion of phosphodiesters is dominated by their prevalence in DNA and RNA, but phosphodiesters occur in other biomolecules, e.g. acyl carrier proteins. Phosphodiester bonds make up the backbones of DNA and RNA. The phosphate is attached to the 5' carbon. The 3' carbon of one sugar is bonded to the 5' phosphate of the adjacent sugar.
Ribozymeright|thumb|Le ribozyme en tête de marteau présent dans le génome de certains viroïdes de plantes Les ribozymes sont des ARN qui possèdent la propriété de catalyser une réaction chimique spécifique. Le terme « ribozyme » est un mot-valise formé à partir des mots « acide ribonucléique » et « enzyme ». La découverte de ces molécules dans les années 1980, indépendamment par Tom Cech et Sidney Altman, a été une grande surprise car jusqu'alors, les protéines étaient les seules macromolécules biologiques connues pour catalyser des réactions chimiques.
Paire de basesvignette|Paire de base GC avec ses 3 liaisons hydrogène intermoléculaires vignette|Paire de base AT avec ses 2 liaisons hydrogène intermoléculaires vignette|Les paires de bases (en gris clair) relient les deux brins de l'ADN (en gris foncé) Une paire de bases () est l'appariement de deux bases nucléiques situées sur deux brins complémentaires d'ADN ou ARN. Cet appariement est effectué par des ponts hydrogène. Il y a quatre types de bases nucléiques : A-T-C-G, ces lettres pour Adénine, Thymine, Cytosine et Guanine.
Riboswitchredresse=1.25|vignette|Structure 3D du riborégulateur fixant la Un riboswitch est un des systèmes de type riborégulateur. Il s'agit d'une structure d'ARN présente sur la partie amont (en 5'), non traduite, de certains ARN messagers. Un riboswitch comporte deux parties : l'aptamère (simple ou en tandem) et la plateforme d'expression. L'aptamère peut lier directement un ligand (une petite molécule) ce qui déclenche une modification de structure de la plateforme d'expression.
Synthèse d'oligonucléotideLa synthèse d'oligonucléotide est la synthèse chimique de fragments relativement courts d'acide nucléique avec une structure définie. La technique est largement utilisée dans les laboratoires. Elle permet d'obtenir un accès inédit ou peu couteux à des oligonucléotides avec la séquence de nucléotides désirée. Le procédé utilise comme building block des nucléosides de type désoxyadénosine (dA), la thymidine (T), la désoxycytidine (dC) et la désoxyguanosine (dG) pour l'ADN et de type adénosine (A), la thymidine (T), la cytidine (C) et la guanosine (G) pour l'ARN sous forme de phosphoramidite.
OligonucléotideLes oligonucléotides sont de courts segments de chaines d'acides nucléiques (ARN ou ADN) de quelques dizaines de nucléotides. Ils sont en général obtenus par synthèse chimique, sous forme de simple brin (modifié ou non modifié) se composant de groupes fonctionnels choisis pour leur intérêt. Les oligonucléotides contiennent donc cinq paires de bases, dont deux sont des dérivés de purine (adénine et guanine) et les autres sont des dérivés de pyrimidine (cytosine, thymine et uracile) ; leur longueur est habituellement notée par le suffixe (du grec ancien / méros, ) précédé du nombre de résidus nucléotidiques.
Évolution systématique de ligands par enrichissement exponentielLa méthode Systematic Evolution of Ligands by EXponential enrichment (SELEX), en français évolution systématique de ligands par enrichissement exponentiel, est une méthode de sélection in vitro, à partir de banques combinatoires d'oligonucléotides synthétiques. Les oligonucléotides sélectionnés sont capables de fixer sélectivement un ligand donné, avec une affinité élevée et spécifique. Initialement mise au point avec des ARN, cette technique a ensuite été généralisée aux oligonucléotides ADN.
ARN polymérase IIIAvec l'ARN polymérase I, l'ARN polymérase II et l'ARN polymérase IV, l'ARN polymérase III (Pol III) est l'une des ARN polymérases présentes dans les cellules eucaryotes qui réalisent la transcription de l'ADN en ARN à l'intérieur du noyau. Elle appartient à la famille des nucléotidyltransférases. Elle réalise spécifiquement la transcription des gènes codant des petits ARN non codants comme l'ARN ribosomique 5S, les ARN de transfert et d'autres petits ARN tels que l'ARNsn U6, l'ARN de voûte, l'ARNsn 7SK, plusieurs micro-ARN, ainsi que plusieurs petits ARN nucléolaires.
Dénaturation de l'ADNLa dénaturation de l'ADN, ou fonte de l'ADN, est un processus qui conduit à transformer un double brin d'ADN en deux simples brins, en rompant les liaisons hydrogène entre les bases nucléiques des deux chaînes complémentaires de l'ADN. Cette dénaturation peut être réalisée in vitro en soumettant l'ADN à tout agent chimique ou physique capable de déstabiliser les liaisons hydrogène, comme le pH, la température, certains solvants, des concentrations ioniques élevées, des agents alcalins,...