Chlorophylle aLa chlorophylle a est la principale forme de chlorophylle présente chez les organismes qui mettent en œuvre la photosynthèse. On en trouve également en petite quantité chez les bactéries vertes sulfureuses. La chlorophylle a présente, en milieu aqueux, deux maximums d'absorption spectrale, aux environs de dans le bleu et de dans le rouge (les valeurs exactes varient en fonction de la composition du solvant), et une plage d'absorption très faible à nulle d'environ , ce qui correspond à toutes les gammes de vert et donne leur couleur dominante aux organismes qui contiennent de la chlorophylle.
Anoxygenic photosynthesisAnoxygenic photosynthesis is a special form of photosynthesis used by some bacteria and archaea, which differs from the better known oxygenic photosynthesis in plants in the reductant used (e.g. hydrogen sulfide instead of water) and the byproduct generated (e.g. elemental sulfur instead of molecular oxygen). Several groups of bacteria can conduct anoxygenic photosynthesis: green sulfur bacteria (GSB), red and green filamentous phototrophs (FAPs e.g. Chloroflexia), purple bacteria, acidobacteriota, and heliobacteria.
Antenne collectricethumb|Structure tri-dimensionnelle d'une antenne collectrice associée au photosystème II chez une plante. Une antenne collectrice est un ensemble de pigments photosynthétiques et de protéines associés à la chlorophylle a dans la membrane des thylakoïdes. Ces pigments surnuméraires sont capables de capter des photons de longueur d'onde variée qui excitent leurs électrons périphériques et transmettent leur état excité aux centres réactionnels des photosystèmes (transmission aux chlorophylles a qui cèdent l’électron excité au premier accepteur de la chaîne photosynthétique).
Énergie (physique)En physique, l'énergie est une grandeur qui mesure la capacité d'un système à modifier un état, à produire un travail entraînant un mouvement, un rayonnement électromagnétique ou de la chaleur. Dans le Système international d'unités (SI), l'énergie s'exprime en joules et est de dimension . Le mot français vient du latin vulgaire energia, lui-même issu du grec ancien / enérgeia. Ce terme grec originel signifie « force en action », par opposition à / dýnamis signifiant « force en puissance » ; Aristote a utilisé ce terme , pour désigner la réalité effective en opposition à la réalité possible.
Fixation du carbone en C3upright=.75|vignette|3-phosphoglycérate. La fixation du carbone en est une voie métabolique de fixation du carbone parmi les trois voies de la photosynthèse, les deux autres étant la fixation du carbone en et le métabolisme acide crassulacéen (CAM). On l'appelle ainsi en référence au , molécule à trois atomes de carbone formée par condensation du dioxyde de carbone sur du ribulose-1,5-bisphosphate par l'enzyme Rubisco : {| align="left" | 220px | + + → 2 | 180px |- align="center" valign="middle" | D-ribulose-1,5-bisphosphate | | 3-phospho-D-glycérate |- align="center" valign="middle" | colspan="3" bgcolor="ffffd0" | Ribulose-1,5-bisphosphate carboxylase/oxygénase (Rubisco) – |} Cette réaction a lieu dans toutes les plantes comme première étape du cycle de Calvin.
Efficacité énergétique (thermodynamique)En physique et ingénierie mécanique, l'efficacité énergétique (ou efficacité thermodynamique) est un nombre sans dimension, qui est le rapport entre ce qui peut être récupéré utilement de la machine sur ce qui a été dépensé pour la faire fonctionner. Aux États-Unis, pour les appareils et équipements résidentiels, elle est déterminée par le facteur énergétique (energy factor). Cette notion est souvent confondue avec une définition du rendement thermodynamique, pour des systèmes dont l'efficacité énergétique théorique maximale est inférieure à un, comme les moteurs dithermes ou les moteurs électriques.
Transfert thermiquevignette|alt=Autour d'un feu, des mains reçoivent sa chaleur par rayonnement (sur le côté), par convection (au-dessus de ses flammes) et par conduction (à travers un ustensile en métal).|Les modes de transfert thermique ( en anglais pour « rayonnement »). Un transfert thermique, appelé plus communément chaleur, est l'un des modes d'échange d'énergie interne entre deux systèmes, l'autre étant le travail : c'est un transfert d'énergie thermique qui s'effectue hors de l'équilibre thermodynamique.
Photobioréacteurthumb|Bassin champ-de-course (Raceway pond) alt=Photobioréacteur Synoxis Algae|vignette|Photobioréacteur alt=Photobioréacteur Synoxis Algae|vignette|Photobioréacteur thumb|Photobioréacteur tubulaire thumb|Photobioréacteur à plaques alvéolaires en PMMA Un photobioréacteur est un système assurant la production de micro-organismes photosynthétiques en suspension dans l’eau, tels que les bactéries photosynthétiques, les cyanobactéries, les microalgues eucaryotes, les cellules isolées de plante pluricellulaires,
Marine microorganismsMarine microorganisms are defined by their habitat as microorganisms living in a marine environment, that is, in the saltwater of a sea or ocean or the brackish water of a coastal estuary. A microorganism (or microbe) is any microscopic living organism or virus, that is too small to see with the unaided human eye without magnification. Microorganisms are very diverse. They can be single-celled or multicellular and include bacteria, archaea, viruses and most protozoa, as well as some fungi, algae, and animals, such as rotifers and copepods.
Bioréacteurvignette|Principe du bioréacteur Un bioréacteur, appelé également fermenteur ou propagateur, est un appareil dans lequel on multiplie des micro-organismes (levures, bactéries, champignons microscopiques, algues, cellules animales et végétales) pour la production de biomasse (écologie), ou pour la production d'un métabolite ou encore la bioconversion d'une molécule d'intérêt. Dans les années 1800, Pasteur, Kutzing, Schwann, et Cagniard-Latour ont démontré que la fermentation était causée par des levures, qui sont des organismes vivants (Hochfeld, 2006).