We study theoretically the erosion threshold of a granular bed forced by a viscous fluid. We first introduce a model of interacting particles driven on a rough substrate. It predicts a continuous transition at some threshold forcing theta(c), beyond which the particle current grows linearly J similar to theta - theta(c). The stationary state is reached after a transient time t(conv) which diverges near the transition as t(conv) similar to vertical bar theta - theta(c)|(-z) with z approximate to 2.5. Both features are consistent with experiments. The model also makes quantitative testable predictions for the drainage pattern: The distribution P(sigma) of local current is found to be extremely broad with P(sigma) similar to J/sigma, and spatial correlations for the current are negligible in the direction transverse to forcing, but long-range parallel to it. We explain some of these features using a scaling argument and a mean-field approximation that builds an analogy with q models. We discuss the relationship between our erosion model and models for the plastic depinning transition of vortex lattices in dirty superconductors, where our results may also apply.
Farhad Rachidi-Haeri, Marcos Rubinstein, Elias Per Joachim Le Boudec, Nicolas Mora Parra, Chaouki Kasmi, Emanuela Radici
Drazen Dujic, Renan Pillon Barcelos, Nikolina Djekanovic
Basil Duval, Stefano Coda, Joan Decker, Umar Sheikh, Luke Simons, Claudia Colandrea, Jean Arthur Cazabonne, Bernhard Sieglin, Gergely Papp