Surface implicitevignette|implicit surface torus (R=40, a=15) vignette|implicit surface of genus 2 150px|vignette|implicit non algebraic surface (wineglas) vignette|equipotential surface of 4 point charges 400px|vignette|metamorphoses between two implicit surfaces (torus and a constant distance product surface) 240px|vignette|approximation of three tori (parallel projection) 280px|vignette|PovRay-image (central projection) of an approximation of three tori 400px|vignette|PovRay-Bild: metamorphoses between a sphere and a cons
Mesh (objet)Un en ou maillage est un objet tridimensionnel constitué de sommets, d'arêtes et de faces organisés en polygones sous forme de fil de fer dans une infographie tridimensionnelle. Les faces se composent généralement de triangles, de quadrilatères ou d'autres polygones convexes simples, car cela simplifie le rendu. Les faces peuvent être combinées pour former des polygones concaves plus complexes, ou des polygones avec des trous. L'étude des en fait partie importante de l'infographie tridimensionnelle.
InfographieL'infographie est le domaine de la création d' assistée par ordinateur. Cette activité est liée aux arts graphiques. Les études les plus courantes passent par les écoles publiques ou privées se situant majoritairement en Angleterre, en Belgique, au Canada, en France, et aux États-Unis. Lors de l'introduction du concept dans la langue française vers les années 1970, le terme « infographie » désigne les graphismes produits par ordinateur.
Infographie tridimensionnelleLa synthèse d'images tridimensionnelles, souvent appelée infographie tridimensionnelle ou infographie 3D (3D pour trois dimensions : x, y, z, les trois axes qui constituent le repère orthonormé de la géométrie dans l'espace), est un ensemble de techniques notamment issues de la CAO qui permet la représentation d'objets en perspective sur un moniteur d'ordinateur. Elle est actuellement très utilisée en art numérique dans l'industrie du film, initiée par les studios Pixar, Disney, DreamWorks, Blue Sky, Illumination et ILM et, .
Surface (géométrie analytique)En géométrie analytique, on représente les surfaces, c'est-à-dire les ensembles de points sur lequel il est localement possible de se repérer à l'aide de deux coordonnées réelles, par des relations entre les coordonnées de leurs points, qu'on appelle équations de la surface ou par des représentations paramétriques. Cet article étudie les propriétés des surfaces que cette approche (appelée souvent extrinsèque) permet de décrire. Pour des résultats plus approfondis, voir Géométrie différentielle des surfaces.
3D temps réelvignette|Rendu VR d'une rivière en 2000. La 3D temps réel qui concerne l'imagerie de synthèse, est une méthode de représentation de données tri-dimensionnelles pour laquelle chaque image composant l'animation est rendue dans l'instant qui précède son affichage. La 3D temps réel ne doit pas être confondue avec les effets stéréoscopiques (relief en trois dimensions, même s'il est possible de faire de la 3D temps réel en relief), ni avec un système temps réel pour lequel le respect des contraintes temporelles et au moins aussi important que le résultat.
InfographieL'infographie est le domaine de la création d' assistée par ordinateur. Cette activité est liée aux arts graphiques. Les études les plus courantes passent par les écoles publiques ou privées se situant majoritairement en Angleterre, en Belgique, au Canada, en France, et aux États-Unis. Lors de l'introduction du concept dans la langue française vers les années 1970, le terme « infographie » désigne les graphismes produits par ordinateur.
Graphisme 2DLe graphisme 2D, ou graphisme en deux dimensions, est la génération par le biais d'un ordinateur, d' principalement issues de modèles en deux dimensions (tels que des modèles géométriques en 2D, des textes et des images numériques) et des techniques spécifiques qui leur sont affiliées. Le mot peut aussi bien se référer à la branche de l'informatique qui comprend ces techniques que pour les modèles eux-mêmes.
Parametric equationIn mathematics, a parametric equation defines a group of quantities as functions of one or more independent variables called parameters. Parametric equations are commonly used to express the coordinates of the points that make up a geometric object such as a curve or surface, called parametric curve and parametric surface, respectively. In such cases, the equations are collectively called a parametric representation, or parametric system, or parameterization (alternatively spelled as parametrisation) of the object.
SmoothnessIn mathematical analysis, the smoothness of a function is a property measured by the number of continuous derivatives it has over some domain, called differentiability class. At the very minimum, a function could be considered smooth if it is differentiable everywhere (hence continuous). At the other end, it might also possess derivatives of all orders in its domain, in which case it is said to be infinitely differentiable and referred to as a C-infinity function (or function).