Apprentissage profondL'apprentissage profond ou apprentissage en profondeur (en anglais : deep learning, deep structured learning, hierarchical learning) est un sous-domaine de l’intelligence artificielle qui utilise des réseaux neuronaux pour résoudre des tâches complexes grâce à des architectures articulées de différentes transformations non linéaires. Ces techniques ont permis des progrès importants et rapides dans les domaines de l'analyse du signal sonore ou visuel et notamment de la reconnaissance faciale, de la reconnaissance vocale, de la vision par ordinateur, du traitement automatisé du langage.
Réseau de neurones artificielsUn réseau de neurones artificiels, ou réseau neuronal artificiel, est un système dont la conception est à l'origine schématiquement inspirée du fonctionnement des neurones biologiques, et qui par la suite s'est rapproché des méthodes statistiques. Les réseaux de neurones sont généralement optimisés par des méthodes d'apprentissage de type probabiliste, en particulier bayésien.
Écran à cristaux liquidesthumb|right|Dans une Tablet PC. thumb|right|Dans un appareil photographique numérique. L'écran à cristaux liquides ou LCD (de l'anglais liquid crystal display) (ACL au Québec pour affichage à cristaux liquides) permet la création d’écrans plats à faible consommation d'électricité. Ces écrans sont utilisés dans presque tous les affichages électroniques. Les premiers panneaux d’affichage à cristaux liquides ont été présentés en 1971, mais il faut attendre 1985 pour que Matsushita propose un écran plat d’une taille et d'une résolution suffisante pour être utilisable sur des micro-ordinateurs.
Algorithme de rechercheEn informatique, un algorithme de recherche est un type d'algorithme qui, pour un domaine, un problème de ce domaine et des critères donnés, retourne en résultat un ensemble de solutions répondant au problème. Supposons que l'ensemble de ses entrées soit divisible en sous-ensemble, par rapport à un critère donné, qui peut être, par exemple, une relation d'ordre. De façon générale, un tel algorithme vérifie un certain nombre de ces entrées et retourne en sortie une ou plusieurs des entrées visées.
Réseau de neurones à propagation avantUn réseau de neurones à propagation avant, en anglais feedforward neural network, est un réseau de neurones artificiels acyclique, se distinguant ainsi des réseaux de neurones récurrents. Le plus connu est le perceptron multicouche qui est une extension du premier réseau de neurones artificiel, le perceptron inventé en 1957 par Frank Rosenblatt. vignette|Réseau de neurones à propagation avant Le réseau de neurones à propagation avant est le premier type de réseau neuronal artificiel conçu. C'est aussi le plus simple.
Rétropropagation du gradientEn intelligence artificielle, plus précisément en apprentissage automatique, la rétropropagation du gradient est une méthode pour entraîner un réseau de neurones. Elle consiste à mettre à jour les poids de chaque neurone de la dernière couche vers la première. Elle vise à corriger les erreurs selon l'importance de la contribution de chaque élément à celles-ci. Dans le cas des réseaux de neurones, les poids synaptiques qui contribuent plus à une erreur seront modifiés de manière plus importante que les poids qui provoquent une erreur marginale.
Algorithmethumb|Algorithme de découpe d'un polygone quelconque en triangles (triangulation). Un algorithme est une suite finie et non ambiguë d'instructions et d’opérations permettant de résoudre une classe de problèmes. Le domaine qui étudie les algorithmes est appelé l'algorithmique. On retrouve aujourd'hui des algorithmes dans de nombreuses applications telles que le fonctionnement des ordinateurs, la cryptographie, le routage d'informations, la planification et l'utilisation optimale des ressources, le , le traitement de textes, la bio-informatique L' algorithme peut être mis en forme de façon graphique dans un algorigramme ou organigramme de programmation.
Modèle de Markov cachéUn modèle de Markov caché (MMC, terme et définition normalisés par l’ISO/CÉI [ISO/IEC 2382-29:1999]) — (HMM)—, ou plus correctement (mais non employé) automate de Markov à états cachés, est un modèle statistique dans lequel le système modélisé est supposé être un processus markovien de paramètres inconnus. Contrairement à une chaîne de Markov classique, où les transitions prises sont inconnues de l'utilisateur mais où les états d'une exécution sont connus, dans un modèle de Markov caché, les états d'une exécution sont inconnus de l'utilisateur (seuls certains paramètres, comme la température, etc.
Cerveauvignette|Cerveau d'un chimpanzé. Le cerveau est le principal organe du système nerveux des animaux bilatériens. Ce terme tient du langage courant (non scientifique) et chez les chordés, comme les humains, il peut désigner l'encéphale, ou uniquement une partie de l'encéphale, le prosencéphale (télencéphale + diencéphale), voire seulement le télencéphale. Néanmoins, dans cet article, le terme « cerveau » prend son sens le plus large. Le cerveau des chordés est situé dans la tête, protégé par le crâne chez les craniés, et son volume varie grandement d'une espèce à l'autre.
TéléviseurUn téléviseur, par métonymie une télévision, un poste ou récepteur de télévision ou encore par apocope une télé, désigne un appareil électronique permettant de recevoir et visualiser sur un écran, des émissions de télévision ou des sources vidéo provenant d'appareils externes. Pour restituer ces signaux, il contient un démodulateur adapté à une ou plusieurs normes de télévision, analogiques ou numériques terrestres et parfois satellite ou câble, en complément.