Some applications of a priori knowledge in multi-stream HMM and HMM/ANN based ASR
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
This paper introduces a non-linear vector-based feature mapping approach to extract robust features for au- tomatic speech recognition (ASR) of overlapping speech using a microphone array. We explore different configurations and additional sources of infor ...
In hybrid hidden Markov model/artificial neural networks (HMM/ANN) automatic speech recognition (ASR) system, the phoneme class conditional probabilities are estimated by first extracting acoustic features from the speech signal based on prior knowledge su ...
In this thesis, methods and models are developed and presented aiming at the estimation, restoration and transformation of the characteristics of human speech. During a first period of the thesis, a concept was developed that allows restoring prosodic voic ...
This study examined whether rapid temporal auditory processing, verbal working memory capacity, non-verbal intelligence, executive functioning, musical ability and prior foreign language experience predicted how well native English speakers (N = 120) discr ...
Assessment of speech intelligibility is important for the development of speech systems, such as telephony systems and text-to-speech (TTS) systems. Existing approaches to the automatic assessment of intelligibility in telephony typically compare a referen ...
In hybrid hidden Markov model/artificial neural networks (HMM/ANN) automatic speech recognition (ASR) system, the phoneme class conditional probabilities are estimated by first extracting acoustic features from the speech signal based on prior knowledge su ...
Background work in various levels of speech coding is reviewed, including unconstrained coding and recognition-synthesis approaches that assume the signal is speech. A pilot project in HMM-TTS based speech coding is then described, in which a comparison wi ...
The thesis work was motivated by the goal of developing personalized speech-to-speech translation and focused on one of its key component techniques – cross-lingual speaker adaptation for text-to-speech synthesis. A personalized speech-to-speech translator ...
This research takes place in the general context of improving the performance of the Distant Speech Recognition (DSR) systems, tackling the reverberation and recognition of overlap speech. Perceptual modeling indicates that sparse representation exists in ...
This paper investigates the combination of cepstral normalization and cochlear implant-like speech processing for microphone array- based speech recognition. Testing speech signals are recorded by a circular microphone array and are subsequently processed ...