Données manquantesEn statistiques, les données manquantes ou les valeurs manquantes se produisent lorsqu’aucune valeur de données n’est représentée pour une variable pour une observation donnée. Les données manquantes sont courantes et peuvent avoir un effet significatif sur l'inférence, les performances de prédiction ou toute autre utilisation faite avec les données. Des données manquantes peuvent exister dans les données en raison d'une « omission de réponse » pour l'observation donnée.
Apprentissage profondL'apprentissage profond ou apprentissage en profondeur (en anglais : deep learning, deep structured learning, hierarchical learning) est un sous-domaine de l’intelligence artificielle qui utilise des réseaux neuronaux pour résoudre des tâches complexes grâce à des architectures articulées de différentes transformations non linéaires. Ces techniques ont permis des progrès importants et rapides dans les domaines de l'analyse du signal sonore ou visuel et notamment de la reconnaissance faciale, de la reconnaissance vocale, de la vision par ordinateur, du traitement automatisé du langage.
Jeux d'entrainement, de validation et de testEn apprentissage automatique, une tâche courante est l'étude et la construction d'algorithmes qui peuvent apprendre et faire des prédictions sur les données. De tels algorithmes fonctionnent en faisant des prédictions ou des décisions basées sur les données, en construisant un modèle mathématique à partir des données d'entrée. Ces données d'entrée utilisées pour construire le modèle sont généralement divisées en plusieurs jeux de données .
Statistique de testEn statistique, une statistique de test - aussi appelée variable de décision - est une variable aléatoire construite à partir d'un échantillon statistique permettant de formuler une règle de décision pour un test statistique. Cette statistique n'est pas unique, ce qui permet de construire différentes règles de décision et de les comparer à l'aide de la notion de puissance statistique. Il est impératif de connaitre sa loi de probabilité lorsque l'hypothèse nulle est vraie. Sa loi sous l'hypothèse alternative est souvent inconnue.
Imputation (statistique)En statistique, l’imputation désigne le processus de remplacement des données manquantes avec des valeurs substituées. Quand un point de données est substitué, on parle d’imputation unitaire ; quand une composante de point de données est substituée, on parle d’imputation d'items. Des données manquantes peuvent être à l'origine de trois types de problèmes : elles peuvent introduire une quantité importante de biais statistiques ; elles peuvent rendre le traitement et l'analyse des données plus laborieux ; elles peuvent réduire l'efficacité des méthodes statistiques.
Test statistiqueEn statistiques, un test, ou test d'hypothèse, est une procédure de décision entre deux hypothèses. Il s'agit d'une démarche consistant à rejeter ou à ne pas rejeter une hypothèse statistique, appelée hypothèse nulle, en fonction d'un échantillon de données. Il s'agit de statistique inférentielle : à partir de calculs réalisés sur des données observées, on émet des conclusions sur la population, en leur rattachant des risques d'être erronées. Hypothèse nulle L'hypothèse nulle notée H est celle que l'on considère vraie a priori.
Test FEn statistique, un test F est un terme générique désignant tout test statistique dans lequel la statistique de test suit la loi de Fisher sous l'hypothèse nulle. Ce type de tests est souvent utilisé lors de la comparaison de modèles statistiques qui ont été ajustés sur un ensemble de données, afin d'identifier le modèle qui correspond le mieux à la population à partir de laquelle les données ont été échantillonnées. Les tests F dits "exacts" sont ceux pour lesquels les modèles ont été ajustés aux données par la méthode des moindres carrés.
Jeu de donnéesvignette|Représentation du jeu de données Iris sur ses quatre dimensions|420x420px Un jeu de données (en anglais dataset ou data set) est un ensemble de valeurs « organisées » ou « contextualisées » (alias « données »), où chaque valeur est associée à une variable (ou attribut) et à une observation. Une variable décrit l'ensemble des valeurs décrivant le même attribut et une observation contient l'ensemble des valeurs décrivant les attributs d'une unité (ou individu statistique).
Human variabilityHuman variability, or human variation, is the range of possible values for any characteristic, physical or mental, of human beings. Frequently debated areas of variability include cognitive ability, personality, physical appearance (body shape, skin color, etc.) and immunology. Variability is partly heritable and partly acquired (nature vs. nurture debate). As the human species exhibits sexual dimorphism, many traits show significant variation not just between populations but also between the sexes.
Reconnaissance automatique de la parolevignette|droite|upright=1.4|La reconnaissance vocale est habituellement traitée dans le middleware ; les résultats sont transmis aux applications utilisatrices. La reconnaissance automatique de la parole (souvent improprement appelée reconnaissance vocale) est une technique informatique qui permet d'analyser la voix humaine captée au moyen d'un microphone pour la transcrire sous la forme d'un texte exploitable par une machine.