Distribution de Wigner-VilleLa distribution de Wigner-Ville, des noms de Eugene Wigner et Jean Ville. Elle a été introduite par Eugene Wigner en 1932 dans le cadre de la physique quantique pour introduire des corrections quantiques à la physique statistique. Son objectif était de remplacer dans l'équation de Schrödinger la fonction d'onde par une densité de probabilité dans l'espace des phases. Cette fonction est par construction à valeurs réelles. Mais du fait de la redondance de la base de représentation, telle qu'exprimée par les relations d'incertitude, cette fonction peut prendre des valeurs négatives.
Informatique affectiveL’informatique affective ou informatique émotionnelle (en anglais, affective computing) est l'étude et le développement de systèmes et d'appareils ayant les capacités de reconnaître, d’exprimer, de synthétiser et modéliser les émotions humaines. C'est un domaine de recherche interdisciplinaire couvrant les domaines de l'informatique, de la psychologie et des sciences cognitives qui consiste à étudier l’interaction entre technologie et sentiments.
Feature (machine learning)In machine learning and pattern recognition, a feature is an individual measurable property or characteristic of a phenomenon. Choosing informative, discriminating and independent features is a crucial element of effective algorithms in pattern recognition, classification and regression. Features are usually numeric, but structural features such as strings and graphs are used in syntactic pattern recognition. The concept of "feature" is related to that of explanatory variable used in statistical techniques such as linear regression.
Émission stimuléethumb|Émission stimulée (lasers). L’émission stimulée (ou émission induite) est, en physique atomique, le processus de désexcitation d'un électron favorisé en illuminant l’atome d’une lumière ayant une longueur d’onde correspondant à l’énergie de transition entre les deux états électroniques. Ce processus, qui est la base du fonctionnement des lasers, ne peut être compris que dans le cadre de la théorie quantique des champs qui considère d’un point de vue quantique à la fois l’électron en orbite autour de l’atome ainsi que le champ électromagnétique qui interagit avec l’atome.
Apprentissage profondL'apprentissage profond ou apprentissage en profondeur (en anglais : deep learning, deep structured learning, hierarchical learning) est un sous-domaine de l’intelligence artificielle qui utilise des réseaux neuronaux pour résoudre des tâches complexes grâce à des architectures articulées de différentes transformations non linéaires. Ces techniques ont permis des progrès importants et rapides dans les domaines de l'analyse du signal sonore ou visuel et notamment de la reconnaissance faciale, de la reconnaissance vocale, de la vision par ordinateur, du traitement automatisé du langage.
Estimation spectraleL'estimation spectrale regroupe toutes les techniques d'estimation de la densité spectrale de puissance (DSP). Les méthodes d'estimation spectrale paramétriques utilisent un modèle pour obtenir une estimation du spectre. Ces modèles reposent sur une connaissance a priori du processus et peuvent être classées en trois grandes catégories : Modèles autorégressif (AR) Modèles à moyenne ajustée (MA) Modèles autorégressif à moyenne ajustée (ARMA). L'approche paramétrique se décompose en trois étapes : Choisir un modèle décrivant le processus de manière appropriée.
Multiple sequence alignmentMultiple sequence alignment (MSA) may refer to the process or the result of sequence alignment of three or more biological sequences, generally protein, DNA, or RNA. In many cases, the input set of query sequences are assumed to have an evolutionary relationship by which they share a linkage and are descended from a common ancestor. From the resulting MSA, sequence homology can be inferred and phylogenetic analysis can be conducted to assess the sequences' shared evolutionary origins.
Théorie spectraleEn mathématiques, et plus particulièrement en analyse, une théorie spectrale est une théorie étendant à des opérateurs définis sur des espaces fonctionnels généraux la théorie élémentaire des valeurs propres et des vecteurs propres de matrices. Bien que ces idées viennent au départ du développement de l'algèbre linéaire, elles sont également liées à l'étude des fonctions analytiques, parce que les propriétés spectrales d'un opérateur sont liées à celles de fonctions analytiques sur les valeurs de son spectre.
Reconnaissance d'entités nomméesLa reconnaissance d'entités nommées est une sous-tâche de l'activité d'extraction d'information dans des corpus documentaires. Elle consiste à rechercher des objets textuels (c'est-à-dire un mot, ou un groupe de mots) catégorisables dans des classes telles que noms de personnes, noms d'organisations ou d'entreprises, noms de lieux, quantités, distances, valeurs, dates, etc. À titre d'exemple, on pourrait donner le texte qui suit, étiqueté par un système de reconnaissance d'entités nommées utilisé lors de la campagne d'évaluation MUC: Henri a acheté 300 actions de la société AMD en 2006 Henri a acheté 300 actions de la société AMD en 2006.
Modélisation procéduraleLa modélisation procédurale est un terme générique pour un certain nombre de techniques, utilisé pour la génération de modèle. Cela peut aller des jeux vidéo (infographie, terrain de jeu, personnages impliqués dans le jeu), dans l'art génératif (ou art procédural), ou bien encore dans l'ingénierie (organisation, production de formes optimales, comme un profil d'aile).