Estimating equationsIn statistics, the method of estimating equations is a way of specifying how the parameters of a statistical model should be estimated. This can be thought of as a generalisation of many classical methods—the method of moments, least squares, and maximum likelihood—as well as some recent methods like M-estimators. The basis of the method is to have, or to find, a set of simultaneous equations involving both the sample data and the unknown model parameters which are to be solved in order to define the estimates of the parameters.
Modèle d'équations structurellesLa modélisation d'équations structurelles ou la modélisation par équations structurelles ou encore la modélisation par équations structurales (en anglais structural equation modeling ou SEM) désignent un ensemble diversifié de modèles mathématiques, algorithmes informatiques et méthodes statistiques qui font correspondre un réseau de concepts à des données. On parle alors de modèles par équations structurales, ou de modèles en équations structurales ou encore de modèles d’équations structurelles.
Intelligence artificielle générativeL'intelligence artificielle générative ou IA générative (ou GenAI) est un type de système d'intelligence artificielle (IA) capable de générer du texte, des images ou d'autres médias en réponse à des invites (ou "prompts"). Les modèles génératifs apprennent les modèles et la structure des données d'entrée, puis génèrent un nouveau contenu similaire aux données d'apprentissage mais avec un certain degré de nouveauté (plutôt que de simplement classer ou prédire les données).
Méthode des variables instrumentalesEn statistique et en économétrie, la méthode des variables instrumentales est une méthode permettant d'identifier et d'estimer des relations causales entre des variables. Cette méthode est très souvent utilisée en économétrie. Le modèle de régression linéaire simple fait l'hypothèse que les variables explicatives sont statistiquement indépendantes du terme d'erreur. Par exemple, si on pose le modèle avec x la variable explicative et u le terme d'erreur, on suppose généralement que x est exogène, c'est-à-dire que .
Errors-in-variables modelsIn statistics, errors-in-variables models or measurement error models are regression models that account for measurement errors in the independent variables. In contrast, standard regression models assume that those regressors have been measured exactly, or observed without error; as such, those models account only for errors in the dependent variables, or responses. In the case when some regressors have been measured with errors, estimation based on the standard assumption leads to inconsistent estimates, meaning that the parameter estimates do not tend to the true values even in very large samples.
Training and developmentTraining and development involve improving the effectiveness of organizations and the individuals and teams within them. Training may be viewed as related to immediate changes in organizational effectiveness via organized instruction, while development is related to the progress of longer-term organizational and employee goals. While training and development technically have differing definitions, the two are oftentimes used interchangeably and/or together.
Generative grammarGenerative grammar, or generativism ˈdʒɛnərətɪvɪzəm, is a linguistic theory that regards linguistics as the study of a hypothesised innate grammatical structure. It is a biological or biologistic modification of earlier structuralist theories of linguistics, deriving ultimately from glossematics. Generative grammar considers grammar as a system of rules that generates exactly those combinations of words that form grammatical sentences in a given language.
Robust measures of scaleIn statistics, robust measures of scale are methods that quantify the statistical dispersion in a sample of numerical data while resisting outliers. The most common such robust statistics are the interquartile range (IQR) and the median absolute deviation (MAD). These are contrasted with conventional or non-robust measures of scale, such as sample standard deviation, which are greatly influenced by outliers.
Diffusion modelIn machine learning, diffusion models, also known as diffusion probabilistic models or score-based generative models, are a class of latent variable models. They are Markov chains trained using variational inference. The goal of diffusion models is to learn the latent structure of a dataset by modeling the way in which data points diffuse through the latent space. In computer vision, this means that a neural network is trained to denoise images blurred with Gaussian noise by learning to reverse the diffusion process.
Entretien d'évaluationL'entretien d'évaluation est un entretien qui a pour but de fixer des objectifs à atteindre au personnel pour une période déterminée, et leur évaluation pour le passé, en fonction de l'ensemble des priorités, des connaissances, de l'expérience et des comportements et aptitudes. Il s'agit d'une explicitation fine des missions afin de déterminer les compétences nécessaires à leur exercice et les actions de formations destinées à acquérir et à améliorer ces compétences.