In statistics, econometrics, epidemiology and related disciplines, the method of instrumental variables (IV) is used to estimate causal relationships when controlled experiments are not feasible or when a treatment is not successfully delivered to every unit in a randomized experiment. Intuitively, IVs are used when an explanatory variable of interest is correlated with the error term, in which case ordinary least squares and ANOVA give biased results. A valid instrument induces changes in the explanatory variable but has no independent effect on the dependent variable, allowing a researcher to uncover the causal effect of the explanatory variable on the dependent variable.
Instrumental variable methods allow for consistent estimation when the explanatory variables (covariates) are correlated with the error terms in a regression model. Such correlation may occur when:
changes in the dependent variable change the value of at least one of the covariates ("reverse" causation),
there are omitted variables that affect both the dependent and explanatory variables, or
the covariates are subject to non-random measurement error.
Explanatory variables that suffer from one or more of these issues in the context of a regression are sometimes referred to as endogenous. In this situation, ordinary least squares produces biased and inconsistent estimates. However, if an instrument is available, consistent estimates may still be obtained. An instrument is a variable that does not itself belong in the explanatory equation but is correlated with the endogenous explanatory variables, conditionally on the value of other covariates.
In linear models, there are two main requirements for using IVs:
The instrument must be correlated with the endogenous explanatory variables, conditionally on the other covariates. If this correlation is strong, then the instrument is said to have a strong first stage. A weak correlation may provide misleading inferences about parameter estimates and standard errors.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
The course provides an introduction to econometrics. The objective is to learn how to make valid (i.e., causal) inference from economic and social data. It explains the main estimators and present met
Identification of discrete-time linear models using experimental data is studied. The correlation method and spectral analysis are used to identify nonparametric models and the subspace and prediction
Discrete choice models are used extensively in many disciplines where it is important to predict human behavior at a disaggregate level. This course is a follow up of the online course “Introduction t
Discrete choice models are used extensively in many disciplines where it is important to predict human behavior at a disaggregate level. This course is a follow up of the online course “Introduction t
Séances de cours associées (63)
vignette|Graphique d'une régression linéaire La méthode des moindres carrés ordinaire (MCO) est le nom technique de la régression mathématique en statistiques, et plus particulièrement de la régression linéaire. Il s'agit d'un modèle couramment utilisé en économétrie. Il s'agit d'ajuster un nuage de points selon une relation linéaire, prenant la forme de la relation matricielle , où est un terme d'erreur.
Simultaneous equations models are a type of statistical model in which the dependent variables are functions of other dependent variables, rather than just independent variables. This means some of the explanatory variables are jointly determined with the dependent variable, which in economics usually is the consequence of some underlying equilibrium mechanism. Take the typical supply and demand model: whilst typically one would determine the quantity supplied and demanded to be a function of the price set by the market, it is also possible for the reverse to be true, where producers observe the quantity that consumers demand and then set the price.
La modélisation d'équations structurelles ou la modélisation par équations structurelles ou encore la modélisation par équations structurales (en anglais structural equation modeling ou SEM) désignent un ensemble diversifié de modèles mathématiques, algorithmes informatiques et méthodes statistiques qui font correspondre un réseau de concepts à des données. On parle alors de modèles par équations structurales, ou de modèles en équations structurales ou encore de modèles d’équations structurelles.
Introduit des variables instrumentales pour résoudre les problèmes d'endogenèse, en utilisant des exemples pour illustrer les applications pratiques et les exigences d'essai.
Introduit la Méthode Généralisée des Moments (GMM), une approche polyvalente pour l'estimation basée sur les restrictions de temps, avec des applications dans les modèles de tarification des actifs.
We propose a novel system leveraging deep learning-based methods to predict urban traffic accidents and estimate their severity. The major challenge is the data imbalance problem in traffic accident prediction. The problem is caused by numerous zero values ...
Correlated errors of experimental data are a common but often neglected problem in physical sciences. Various tools are provided here for thorough propagation of uncertainties in cases of correlated errors. Discussed are techniques especially applicable to ...
ELSEVIER2023
, ,
We present a two-staged statistical and geospatial analysis exploring the discrepancies of household electricity tariffs across 1,913 Swiss municipalities. First, we perform a multilinear regression analysis, considering structural, sociodemographic data a ...