Entropie de ShannonEn théorie de l'information, l'entropie de Shannon, ou plus simplement entropie, est une fonction mathématique qui, intuitivement, correspond à la quantité d'information contenue ou délivrée par une source d'information. Cette source peut être un texte écrit dans une langue donnée, un signal électrique ou encore un fichier informatique quelconque (suite d'octets). Elle a été introduite par Claude Shannon. Du point de vue d'un récepteur, plus la source émet d'informations différentes, plus l'entropie (ou incertitude sur ce que la source émet) est grande.
Entropie croiséeEn théorie de l'information, l'entropie croisée entre deux lois de probabilité mesure le nombre de bits moyen nécessaires pour identifier un événement issu de l'« ensemble des événements » - encore appelé tribu en mathématiques - sur l'univers , si la distribution des événements est basée sur une loi de probabilité , relativement à une distribution de référence . L'entropie croisée pour deux distributions et sur le même espace probabilisé est définie de la façon suivante : où est l'entropie de , et est la divergence de Kullback-Leibler entre et .
Entropie minEn probabilités et en théorie de l'information, l'entropie min d'une variable aléatoire discrète X prenant n valeurs ou sorties possibles 1... n associées au probabilités p1... pn est : La base du logarithme est juste une constante d'échelle. Pour avoir un résultat en bits, il faut utiliser le logarithme en base 2. Ainsi, une distribution a une entropie min d'au moins b bits si aucune sortie n'a une probabilité plus grande que 2-b. L'entropie min est toujours inférieure ou égale à l'entropie de Shannon; avec égalité si toutes les valeurs de X sont équiprobables.
Apprentissage ensemblisteIn statistics and machine learning, ensemble methods use multiple learning algorithms to obtain better predictive performance than could be obtained from any of the constituent learning algorithms alone. Unlike a statistical ensemble in statistical mechanics, which is usually infinite, a machine learning ensemble consists of only a concrete finite set of alternative models, but typically allows for much more flexible structure to exist among those alternatives.
Apprentissage profondL'apprentissage profond ou apprentissage en profondeur (en anglais : deep learning, deep structured learning, hierarchical learning) est un sous-domaine de l’intelligence artificielle qui utilise des réseaux neuronaux pour résoudre des tâches complexes grâce à des architectures articulées de différentes transformations non linéaires. Ces techniques ont permis des progrès importants et rapides dans les domaines de l'analyse du signal sonore ou visuel et notamment de la reconnaissance faciale, de la reconnaissance vocale, de la vision par ordinateur, du traitement automatisé du langage.
Classification naïve bayésiennevignette|Exemple de classification naïve bayésienne pour un ensemble de données dont le nombre augmente avec le temps. La classification naïve bayésienne est un type de classification bayésienne probabiliste simple basée sur le théorème de Bayes avec une forte indépendance (dite naïve) des hypothèses. Elle met en œuvre un classifieur bayésien naïf, ou classifieur naïf de Bayes, appartenant à la famille des classifieurs linéaires. Un terme plus approprié pour le modèle probabiliste sous-jacent pourrait être « modèle à caractéristiques statistiquement indépendantes ».
BoostingLe boosting est un domaine de l'apprentissage automatique (branche de l'intelligence artificielle). C'est un principe qui regroupe de nombreux algorithmes qui s'appuient sur des ensembles de classifieurs binaires : le boosting optimise leurs performances. Le principe est issu de la combinaison de classifieurs (appelés également hypothèses). Par itérations successives, la connaissance d'un classifieur faible - weak classifier - est ajoutée au classifieur final - strong classifier.
Formule de Boltzmannthumb|Sur la tombe de Ludwig Boltzmann En physique statistique, la formule de Boltzmann (1877) définit l'entropie microcanonique d'un système physique à l'équilibre macroscopique, libre d'évoluer à l'échelle microscopique entre micro-états différents. Elle s'écrit : où est la constante de Boltzmann qui est égale à . est appelé le nombre de complexions du système ou nombre de configurations.
Principe d'entropie maximaleLe principe d'entropie maximale consiste, lorsqu'on veut représenter une connaissance imparfaite d'un phénomène par une loi de probabilité, à : identifier les contraintes auxquelles cette distribution doit répondre (moyenne, etc) ; choisir de toutes les distributions répondant à ces contraintes celle ayant la plus grande entropie au sens de Shannon. De toutes ces distributions, c'est en effet celle d'entropie maximale qui contient le moins d'information, et elle est donc pour cette raison la moins arbitraire de toutes celles que l'on pourrait utiliser.
Classifieur linéaireEn apprentissage automatique, les classifieurs linéaires sont une famille d'algorithmes de classement statistique. Le rôle d'un classifieur est de classer dans des groupes (des classes) les échantillons qui ont des propriétés similaires, mesurées sur des observations. Un classifieur linéaire est un type particulier de classifieur, qui calcule la décision par combinaison linéaire des échantillons. « Classifieur linéaire » est une traduction de l'anglais linear classifier.