Statistiques non paramétriquesLa statistique non paramétrique est un domaine de la statistique qui ne repose pas sur des familles de loi de probabilité paramétriques. Les méthodes non paramétriques pour la régression comprennent les histogrammes, les méthodes d'estimation par noyau, les splines et les décompositions dans des dictionnaires de filtres (par exemple décomposition en ondelettes). Bien que le nom de non paramétriques soit donné à ces méthodes, elles reposent en vérité sur l'estimation de paramètres.
Régression logistiqueEn statistiques, la régression logistique ou modèle logit est un modèle de régression binomiale. Comme pour tous les modèles de régression binomiale, il s'agit d'expliquer au mieux une variable binaire (la présence ou l'absence d'une caractéristique donnée) par des observations réelles nombreuses, grâce à un modèle mathématique. En d'autres termes d'associer une variable aléatoire de Bernoulli (génériquement notée ) à un vecteur de variables aléatoires . La régression logistique constitue un cas particulier de modèle linéaire généralisé.
Théorie de la décisionLa théorie de la décision est une théorie de mathématiques appliquées ayant pour objet la prise de décision par une entité unique. (Les questions liées à la décision collective relèvent de la théorie du choix social.) La notion de décision intertemporelle découle de la prise en compte du facteur temps dans les problématiques reliant l'offre et la demande, les disponibilités et les contraintes. Ces problématiques sont celles qui découlent des combinaisons possibles entre les disponibilités et les décisions pouvant les impliquer.
Inférence bayésiennevignette|Illustration comparant les approches fréquentiste et bayésienne (Christophe Michel, 2018). L’inférence bayésienne est une méthode d'inférence statistique par laquelle on calcule les probabilités de diverses causes hypothétiques à partir de l'observation d'événements connus. Elle s'appuie principalement sur le théorème de Bayes. Le raisonnement bayésien construit, à partir d'observations, une probabilité de la cause d'un type d'événements.
Platt scalingIn machine learning, Platt scaling or Platt calibration is a way of transforming the outputs of a classification model into a probability distribution over classes. The method was invented by John Platt in the context of support vector machines, replacing an earlier method by Vapnik, but can be applied to other classification models. Platt scaling works by fitting a logistic regression model to a classifier's scores. Consider the problem of binary classification: for inputs x, we want to determine whether they belong to one of two classes, arbitrarily labeled +1 and −1.
Prise de décisionvignette|Lorsqu'il s'agit de prendre une décision, il est bon de savoir que des situations différentes nécessitent une approche différente. Il n'y a pas de façon unique de penser/d'agir. la plupart du temps, nous errons dans l'espace du désordre, sans savoir ce qui se passe, sans savoir comment agir. Dans ce cas, nous avons tendance à entrer dans l'espace avec lequel nous nous sentons le plus à l'aise et à commencer à agir. Lorsque vous avez trouvé le Saint Graal, la solution unique pour chaque problème, vous feriez mieux de faire attention.
Interprétations de la probabilitéLe mot probabilité a été utilisé dans une variété de domaines depuis qu'il a été appliqué à l'étude mathématique des jeux de hasard. Est-ce que la probabilité mesure la tendance réelle physique de quelque chose de se produire, ou est-ce qu'elle est une mesure du degré auquel on croit qu'elle se produira, ou faut-il compter sur ces deux éléments ? Pour répondre à ces questions, les mathématiciens interprètent les valeurs de probabilité de la théorie des probabilités.
Ensemble interpretationThe ensemble interpretation of quantum mechanics considers the quantum state description to apply only to an ensemble of similarly prepared systems, rather than supposing that it exhaustively represents an individual physical system. The advocates of the ensemble interpretation of quantum mechanics claim that it is minimalist, making the fewest physical assumptions about the meaning of the standard mathematical formalism. It proposes to take to the fullest extent the statistical interpretation of Max Born, for which he won the Nobel Prize in Physics in 1954.
Arbre de décisionvignette| Arbre de décision Un arbre de décision est un outil d'aide à la décision représentant un ensemble de choix sous la forme graphique d'un arbre. Les différentes décisions possibles sont situées aux extrémités des branches (les « feuilles » de l'arbre), et sont atteintes en fonction de décisions prises à chaque étape. L'arbre de décision est un outil utilisé dans des domaines variés tels que la sécurité, la fouille de données, la médecine, etc. Il a l'avantage d'être lisible et rapide à exécuter.
Reconnaissance de formesthumb|Reconnaissance de forme à partir de modélisation en 3D La reconnaissance de formes (ou parfois reconnaissance de motifs) est un ensemble de techniques et méthodes visant à identifier des régularités informatiques à partir de données brutes afin de prendre une décision dépendant de la catégorie attribuée à ce motif. On considère que c'est une branche de l'intelligence artificielle qui fait largement appel aux techniques d'apprentissage automatique et aux statistiques.