Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
Chord progressions are the building blocks from which tonal music is constructed. Inferring chord progressions is thus an essential step towards modeling long term dependencies in music. In this paper, a distributed representation for chords is designed such that Euclidean distances roughly correspond to psychoacoustic dissimilarities. Parameters in the graphical models are learnt with the EM algorithm and the classical Junction Tree algorithm. Various model architectures are compared in terms of conditional out-of-sample likelihood. Both perceptual and statistical evidence show that binary trees related to meter are well suited to capture chord dependencies.
Martin Alois Rohrmeier, Johannes Hentschel, Gabriele Cecchetti, Sabrina Laneve, Ludovica Schaerf
Martin Alois Rohrmeier, Fabian Claude Moss, Robert Lieck