Ensemble microcanoniqueEn physique statistique, l'ensemble microcanonique est un ensemble statistique constitué des répliques fictives d'un système réel pouvant être considéré comme isolé, par suite dont l'énergie (E), le volume (V) et le nombre de particules (N) sont fixés. Cet ensemble statistique a une importance particulière, car c'est à partir de celui-ci que le postulat de la physique statistique est défini. Cet ensemble permet aussi de déterminer les ensembles canonique et grand-canonique, à l'aide d'échanges d'énergie et/ou de particules avec un réservoir.
Classement automatiquevignette|La fonction 1-x^2-2exp(-100x^2) (rouge) et les valeurs déplacées par un bruit de 0,1*N(0,1). Le classement automatique ou classification supervisée est la catégorisation algorithmique d'objets. Elle consiste à attribuer une classe ou catégorie à chaque objet (ou individu) à classer, en se fondant sur des données statistiques. Elle fait couramment appel à l'apprentissage automatique et est largement utilisée en reconnaissance de formes. En français, le classement fait référence à l'action de classer donc de « ranger dans une classe ».
Probabilistic classificationIn machine learning, a probabilistic classifier is a classifier that is able to predict, given an observation of an input, a probability distribution over a set of classes, rather than only outputting the most likely class that the observation should belong to. Probabilistic classifiers provide classification that can be useful in its own right or when combining classifiers into ensembles. Formally, an "ordinary" classifier is some rule, or function, that assigns to a sample x a class label ŷ: The samples come from some set X (e.
Algorithme d'apprentissage incrémentalEn informatique, un algorithme d'apprentissage incrémental ou incrémentiel est un algorithme d'apprentissage qui a la particularité d'être online, c'est-à-dire qui apprend à partir de données reçues au fur et à mesure du temps. À chaque incrément il reçoit des données d'entrées et un résultat, l'algorithme calcule alors une amélioration du calcul fait pour prédire le résultat à partir des données d'entrées.
Stability (learning theory)Stability, also known as algorithmic stability, is a notion in computational learning theory of how a machine learning algorithm output is changed with small perturbations to its inputs. A stable learning algorithm is one for which the prediction does not change much when the training data is modified slightly. For instance, consider a machine learning algorithm that is being trained to recognize handwritten letters of the alphabet, using 1000 examples of handwritten letters and their labels ("A" to "Z") as a training set.
Ensemble grand-canoniqueEn physique statistique, l’ensemble grand-canonique est un ensemble statistique qui correspond au cas d'un système qui peut échanger de l'énergie avec un réservoir externe d'énergie (ou thermostat), ainsi que des particules. Il est donc en équilibre thermodynamique thermique et chimique avec le réservoir d'énergie et de particules. Plus précisément, il s'agit de l'ensemble des « copies virtuelles » (ou répliques fictives) du même système en équilibre avec le réservoir d'énergie et de particules.
Apprentissage auto-superviséL'apprentissage auto-supervisé ("self-supervised learning" en anglais) (SSL) est une méthode d'apprentissage automatique. Il apprend à partir d'échantillons de données non étiquetés. Il peut être considéré comme une forme intermédiaire entre l'apprentissage supervisé et non supervisé. Il est basé sur un réseau de neurones artificiels. Le réseau de neurones apprend en deux étapes. Tout d'abord, la tâche est résolue sur la base de pseudo-étiquettes qui aident à initialiser les poids du réseau.
AttemptAn attempt to commit a crime occurs if a criminal has an intent to commit a crime and takes a substantial step toward completing the crime, but for reasons not intended by the criminal, the final resulting crime does not occur. Attempt to commit a particular crime is a crime, usually considered to be of the same or lesser gravity as the particular crime attempted. Attempt is a type of inchoate crime, a crime that is not fully developed. The crime of attempt has two elements, intent and some conduct toward completion of the crime.
Programme d'échecsvignette|Jeu d'échecs électronique des années 1990 avec écran LCD. Un programme d'échecs est un programme informatique conçu pour jouer au jeu d'échecs. L'histoire des machines joueuses d'échecs n'attend pas le développement de l'électronique et de l'informatique : la première fut l'automate turc inventée en 1769 par Johan Wolfgang von Kempelen, qui joua notamment contre l'impératrice Catherine II et Napoléon Bonaparte. C'était en fait un homme de petite taille caché dans la machine.
Apprentissage par renforcement profondL'apprentissage par renforcement profond (en anglais : deep reinforcement learning ou deep RL) est un sous-domaine de l'apprentissage automatique (en anglais : machine learning) qui combine l'apprentissage par renforcement et l'apprentissage profond (en anglais : deep learning). L'apprentissage par renforcement considère le problème d'un agent informatique (par exemple, un robot, un agent conversationnel, un personnage dans un jeu vidéo, etc.) qui apprend à prendre des décisions par essais et erreurs.