Bayesian Approach for Indoor Pedestrian Localisation
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Composite likelihoods are increasingly used in applications where the full likelihood is analytically unknown or computationally prohibitive. Although some frequentist properties of the maximum composite likelihood estimator are akin to those of the maximu ...
Academia Sinica, Institute of Statistical Science2012
Background The surgical treatment of liver tumours relies on precise localization of the lesions and detailed knowledge of the patient-specific vascular and biliary anatomy. Detailed three-dimensional (3D) anatomical information facilitates complete tumour ...
Probabilistic matrix factorization methods aim to extract meaningful correlation structure from an incomplete data matrix by postulating low rank constraints. Recently, variational Bayesian (VB) inference techniques have successfully been applied to such l ...
We state the problem of inverse reinforcement learning in terms of preference elicitation, resulting in a principled (Bayesian) statistical formulation. This generalises previous work on Bayesian inverse reinforcement learning and allows us to obtain a pos ...
We present a class of models that, via a simple construction, enables exact, incremental, non-parametric, polynomial-time, Bayesian inference of conditional measures. The approach relies upon creating a sequence of covers on the conditioning variable and m ...
We proposed a Bayesian model for the detection of asynchronous EEG patterns. Based on a skew normal model of the pattern of interest in the time-domain and on the assumption that background activity can be modeled as colored noise, we estimate both the pat ...
We consider a confidence parametrization of binary information sources in terms of appropriate likelihood ratios. This parametrization is used for Bayesian belief updates and for the equivalent comparison of binary experiments. In contrast to the standard ...
This paper presents a new concept for simultaneous modeling and adjusting of raw inertial observations with optical and (if available) GNSS data streams. The presented post-mission procedure of dynamic networks allows treating dynamic (e.g. inertial) and s ...
Modeling and estimation of gyroscope and accelerometer errors is generally a very challenging task, especially for low-cost inertial MEMS sensors whose systematic errors have complex spectral structures. Consequently, identifying correct error-state parame ...
Floating car data (FCD) meanwhile is a widely available and affordable data source. The given GPS data – delivered in frequencies of some seconds or sometimes only a few minutes – are typically matched to some digital road network and mainly the traffic va ...