Moyenne harmoniqueLa moyenne harmonique H de nombres réels strictement positifs a1, ..., a est définie par : C'est l'inverse de la moyenne arithmétique des inverses des termes. La moyenne harmonique est donc utilisée lorsqu'on veut déterminer un rapport moyen, dans un domaine où il existe des liens de proportionnalité inverses. Dans certains cas, la moyenne harmonique donne la véritable notion de « moyenne ».
Empirical probabilityIn probability theory and statistics, the empirical probability, relative frequency, or experimental probability of an event is the ratio of the number of outcomes in which a specified event occurs to the total number of trials, i.e., by means not of a theoretical sample space but of an actual experiment. More generally, empirical probability estimates probabilities from experience and observation. Given an event A in a sample space, the relative frequency of A is the ratio \tfrac m n, m being the number of outcomes in which the event A occurs, and n being the total number of outcomes of the experiment.
JackknifeEn statistique, le jackknife ( couteau suisse) est une méthode de rééchantillonnage qui tire son nom de couteau suisse du fait qu'elle peut être utile à diverses choses : réduction du biais en petit échantillon, construction d'un intervalle de confiance raisonnable pour toute sorte de statistiques, test statistique. À partir des années 70, cette méthode de rééchantillonnage a été « remplacée » par une méthode plus sophistiquée, le bootstrap. Cette méthode a été développée par (1924-1973).
Coefficient de GiniLe coefficient de Gini, ou indice de Gini, est une mesure statistique permettant de rendre compte de la répartition d'une variable (salaire, revenus, patrimoine) au sein d'une population. Autrement dit, il mesure le niveau d'inégalité de la répartition d'une variable dans la population. Ce coefficient est typiquement utilisé pour mesurer l'inégalité des revenus dans un pays. Il a été développé par le statisticien italien Corrado Gini.
Méthode de HalleyEn analyse numérique, la méthode de Halley est un algorithme de recherche d'un zéro d'une fonction utilisé pour les fonctions d'une variable réelle dérivables deux fois et à dérivée seconde continue (i.e. C2). La méthode, présentée par l'astronome Edmond Halley, est une généralisation de la méthode de Newton, à convergence cubique. Soit f une fonction C2 et a un zéro de f. La méthode de Halley consiste à itérer à partir d'une valeur x0 proche de a. Au voisinage de a, la suite vérifie : avec K > 0 ; ce qui signifie que la convergence est donc (au pire) cubique.
Méthode de CopelandLa méthode de Copeland ou la méthode d'agrégation par paires de Copeland est une méthode Condorcet, dans laquelle les candidats sont classés par le nombre de victoires par paires, moins le nombre de défaites par paires. Elle satisfait le critère de Smith. Elle a été inventée par Ramon Llull dans son traité Ars Electionis de 1299, mais sa forme ne comptait que les victoires par paires et non les défaites (ce qui pourrait conduire à un résultat différent en cas d'égalité par paires).