Inductive probabilityInductive probability attempts to give the probability of future events based on past events. It is the basis for inductive reasoning, and gives the mathematical basis for learning and the perception of patterns. It is a source of knowledge about the world. There are three sources of knowledge: inference, communication, and deduction. Communication relays information found using other methods. Deduction establishes new facts based on existing facts. Inference establishes new facts from data. Its basis is Bayes' theorem.
Biais de confirmationLe biais de confirmation, également dénommé biais de , est le biais cognitif qui consiste à privilégier les informations confirmant ses idées préconçues ou ses hypothèses, ou à accorder moins de poids aux hypothèses et informations jouant en défaveur de ses conceptions, ce qui se traduit par une réticence à changer d'avis. Ce biais se manifeste chez un individu lorsqu'il rassemble des éléments ou se rappelle des informations mémorisées, de manière sélective, les interprétant d'une manière biaisée.
Utilisateur (informatique)En informatique, le terme utilisateur (anciennement un opérateur ou un informaticien avec possibilité de feminisation) est employé pour désigner une qui utilise un système informatisé (ordinateur ou robot) mais qui n'est pas nécessairement informaticien (par opposition au programmeur par exemple). L'utilisateur peut aussi être une machine automatique (essentiellement représenté par un bot informatique) pouvant disposer de différents degrés d'autonomie.
Apprentissage superviséL'apprentissage supervisé (supervised learning en anglais) est une tâche d'apprentissage automatique consistant à apprendre une fonction de prédiction à partir d'exemples annotés, au contraire de l'apprentissage non supervisé. On distingue les problèmes de régression des problèmes de classement. Ainsi, on considère que les problèmes de prédiction d'une variable quantitative sont des problèmes de régression tandis que les problèmes de prédiction d'une variable qualitative sont des problèmes de classification.
Apprentissage ensemblisteIn statistics and machine learning, ensemble methods use multiple learning algorithms to obtain better predictive performance than could be obtained from any of the constituent learning algorithms alone. Unlike a statistical ensemble in statistical mechanics, which is usually infinite, a machine learning ensemble consists of only a concrete finite set of alternative models, but typically allows for much more flexible structure to exist among those alternatives.
Apprentissage profondL'apprentissage profond ou apprentissage en profondeur (en anglais : deep learning, deep structured learning, hierarchical learning) est un sous-domaine de l’intelligence artificielle qui utilise des réseaux neuronaux pour résoudre des tâches complexes grâce à des architectures articulées de différentes transformations non linéaires. Ces techniques ont permis des progrès importants et rapides dans les domaines de l'analyse du signal sonore ou visuel et notamment de la reconnaissance faciale, de la reconnaissance vocale, de la vision par ordinateur, du traitement automatisé du langage.
Interface utilisateurL’interface utilisateur est un dispositif matériel ou logiciel qui permet à un usager d'interagir avec un produit informatique. C'est une interface informatique qui coordonne les interactions homme-machine, en permettant à l'usager humain de contrôler le produit et d'échanger des informations avec le produit. Parmi les exemples d’interface utilisateur figurent les aspects interactifs des systèmes d’exploitation informatiques, des logiciels informatiques, des smartphones et, dans le domaine du design industriel, les commandes des opérateurs de machines lourdes et les commandes de processus.
Learning rateIn machine learning and statistics, the learning rate is a tuning parameter in an optimization algorithm that determines the step size at each iteration while moving toward a minimum of a loss function. Since it influences to what extent newly acquired information overrides old information, it metaphorically represents the speed at which a machine learning model "learns". In the adaptive control literature, the learning rate is commonly referred to as gain. In setting a learning rate, there is a trade-off between the rate of convergence and overshooting.
Théorie de la préférence révéléeLa Théorie de la préférence révélée est une théorie économique proposée par Paul Samuelson. Paul Samuelson a proposé de déduire les préférences des consommateurs en observant leurs choix. Plutôt que de les questionner sur leurs préférences en proposant plusieurs paniers de biens possibles afin d’obtenir des courbes d’indifférence, cette théorie se limite uniquement à l’observation du comportement des consommateurs. En faisant ses achats, le consommateur révèle ses préférences.
Product (business)In marketing, a product is an object, or system, or service made available for consumer use as of the consumer demand; it is anything that can be offered to a market to satisfy the desire or need of a customer. In retailing, products are often referred to as merchandise, and in manufacturing, products are bought as raw materials and then sold as finished goods. A service is also regarded as a type of product. In project management, products are the formal definition of the project deliverables that make up or contribute to delivering the objectives of the project.