Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
In this paper, we propose an analytical low-level representation of images, obtained by a decomposition process, here the matching pursuit (MP) algorithm, as a new way of describing objects through a general continuous description using an affine invariant dictionary of basis functions. This description is used to recognize objects in images. In the learning phase, a template object is decomposed, and the extracted subset of basis functions, called meta-atom, gives the description of our object. We then extend naturally this description into the linear scale-space using the definition of our basis functions, and thus bringing a more general representation of our object. We use this enhanced description as a predefined dictionary of the object to conduct an MP-based shape recognition (MPSR) task into the linear scale-space. The introduction of the scale-space approach improves the robustness of our method, and permits to avoid local minima problems encountered when minimizing a non-convex energy function. We show results for the detection of complex synthetic shapes, as well as natural (aerial and medical) images.
Frédéric Mila, Pierre Marcel Nataf, Kianna Wan
Martin Jaggi, Sebastian Urban Stich, Sai Praneeth Reddy Karimireddy, Anant Raj