Sparse dictionary learningSparse dictionary learning (also known as sparse coding or SDL) is a representation learning method which aims at finding a sparse representation of the input data in the form of a linear combination of basic elements as well as those basic elements themselves. These elements are called atoms and they compose a dictionary. Atoms in the dictionary are not required to be orthogonal, and they may be an over-complete spanning set. This problem setup also allows the dimensionality of the signals being represented to be higher than the one of the signals being observed.
Matching pursuitMatching pursuit (MP) is a sparse approximation algorithm which finds the "best matching" projections of multidimensional data onto the span of an over-complete (i.e., redundant) dictionary . The basic idea is to approximately represent a signal from Hilbert space as a weighted sum of finitely many functions (called atoms) taken from . An approximation with atoms has the form where is the th column of the matrix and is the scalar weighting factor (amplitude) for the atom . Normally, not every atom in will be used in this sum.
Sparse approximationSparse approximation (also known as sparse representation) theory deals with sparse solutions for systems of linear equations. Techniques for finding these solutions and exploiting them in applications have found wide use in , signal processing, machine learning, medical imaging, and more. Consider a linear system of equations , where is an underdetermined matrix and . The matrix (typically assumed to be full-rank) is referred to as the dictionary, and is a signal of interest.
Référentiel (physique)En physique, il est impossible de définir une position ou un mouvement par rapport à l'espace « vide ». Un référentiel est un solide (un ensemble de points fixes entre eux) par rapport auquel on repère une position ou un mouvement. Un dispositif servant d'horloge est également nécessaire pour pouvoir qualifier le mouvement et définir la notion de vitesse. Un exemple classique de référentiel est le référentiel terrestre qui est lié à la Terre.
Transformations de LorentzCet article présente les transformations de Lorentz sous un aspect technique. Le lecteur désireux d'obtenir des informations physiques plus générales à ce sujet pourra se référer à l'article Relativité restreinte. thumb|Hendrik Lorentz en 1916. Les transformations de Lorentz sont des transformations linéaires des coordonnées d'un point de l'espace-temps de Minkowski à quatre dimensions.
Solid modelingSolid modeling (or solid modelling) is a consistent set of principles for mathematical and computer modeling of three-dimensional shapes (solids). Solid modeling is distinguished within the broader related areas of geometric modeling and computer graphics, such as 3D modeling, by its emphasis on physical fidelity. Together, the principles of geometric and solid modeling form the foundation of 3D-computer-aided design and in general support the creation, exchange, visualization, animation, interrogation, and annotation of digital models of physical objects.
Poursuite de baseLa poursuite de base (de l'anglais basis pursuit), aussi appelée recouvrement par norme ou plus simplement recouvrement , est une technique d'optimisation mathématique utilisée initialement en traitement du signal qui revient à résoudre un problème d'optimisation de la forme où l'inconnue est un vecteur formé de nombres réels, est la norme , est une matrice réelle et . Il s'agit donc de trouver le plus petit vecteur , au sens de la norme , qui vérifie l'équation affine Ce problème est convexe (l'objectif est convexe et l'ensemble admissible est affine, donc convexe), mais non lisse (la norme n'est pas partout différentiable).
Transformations de GaliléeEn physique, une transformation de Galilée correspond aux formules de transformations des coordonnées spatiales et temporelle entre deux référentiels galiléens donnés. Tout référentiel en mouvement de translation rectiligne et uniforme par rapport à un référentiel donné supposé galiléen, est lui-même galiléen. Une telle transformation laisse invariantes les équations de la mécanique newtonienne, mais pas celles de la dynamique relativiste ou les équations de Maxwell.
InfographieL'infographie est le domaine de la création d' assistée par ordinateur. Cette activité est liée aux arts graphiques. Les études les plus courantes passent par les écoles publiques ou privées se situant majoritairement en Angleterre, en Belgique, au Canada, en France, et aux États-Unis. Lors de l'introduction du concept dans la langue française vers les années 1970, le terme « infographie » désigne les graphismes produits par ordinateur.
Acquisition compriméeL'acquisition comprimée (en anglais compressed sensing) est une technique permettant de trouver la solution la plus parcimonieuse d'un système linéaire sous-déterminé. Elle englobe non seulement les moyens pour trouver cette solution mais aussi les systèmes linéaires qui sont admissibles. En anglais, elle porte le nom de Compressive sensing, Compressed Sampling ou Sparse Sampling.