Cet article présente les transformations de Lorentz sous un aspect technique. Le lecteur désireux d'obtenir des informations physiques plus générales à ce sujet pourra se référer à l'article Relativité restreinte. thumb|Hendrik Lorentz en 1916. Les transformations de Lorentz sont des transformations linéaires des coordonnées d'un point de l'espace-temps de Minkowski à quatre dimensions. En relativité restreinte, elles correspondent aux lois de changement de référentiel galiléen pour lesquelles les équations de la physique sont préservées, et pour lesquelles la vitesse de la lumière demeure identique dans tous les référentiels galiléens. Elles sont parfois considérées comme l'équivalent relativiste des transformations de Galilée de la mécanique classique. La forme la plus courante est : Où (t, x, y, z) et (t′, x′, y′, z′) représentent les coordonnées d'un événement dans deux référentiels inertiels dont la vitesse relative est parallèle à l'axe des , est la vitesse de la lumière, et le facteur de Lorentz est . Le terme « transformations de Lorentz » peut faire référence aux changements de coordonnées présentés ci-dessus, parfois nommés transformations de Lorentz spéciales ou boost de Lorentz, ou bien à un ensemble plus vaste nommé groupe de Lorentz. Ce groupe est constitué de l'ensemble des transformations linéaires compatibles avec les postulats de la relativité restreinte, c'est-à-dire celles qui laissent invariante la pseudo-norme de l'espace de Minkowski. Le groupe de Lorentz inclut non seulement les boosts de Lorentz pour toute direction arbitraire de l'espace, mais également les pivotements du repère d'espace, nommés rotations statiques de l'espace. Dans le cadre des théories quantiques relativistes et de la description des particules élémentaires, les transformations qui renversent le sens du temps et l'orientation du repère d'espace sont également admises, bien qu'elles puissent sembler dénuées de sens en relativité restreinte.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (31)
PHYS-314: Quantum physics II
The aim of this course is to familiarize the student with the concepts, methods and consequences of quantum physics.
PHYS-324: Classical electrodynamics
The goal of this course is the study of the physical and conceptual consequences of Maxwell equations.
PHYS-427: Relativity and cosmology I
Introduce the students to general relativity and its classical tests.
Afficher plus
Publications associées (146)
Concepts associés (18)
Relativité restreinte
La relativité restreinte est la théorie élaborée par Albert Einstein en 1905 en vue de tirer toutes les conséquences physiques de la relativité galiléenne et du principe selon lequel la vitesse de la lumière dans le vide a la même valeur dans tous les référentiels galiléens (ou inertiels), ce qui était implicitement énoncé dans les équations de Maxwell (mais interprété bien différemment jusque-là, avec « l'espace absolu » de Newton et léther).
Espace-temps
En physique, l'espace-temps est une représentation mathématique de l'espace et du temps comme deux notions inséparables et s'influençant l'une l'autre. En réalité, ce sont deux versions (vues sous un angle différent) d'une même entité. Cette conception de l'espace et du temps est l'un des grands bouleversements survenus au début du dans le domaine de la physique, mais aussi pour la philosophie. Elle est apparue avec la relativité restreinte et sa représentation géométrique qu'est l'espace de Minkowski ; son importance a été renforcée par la relativité générale.
Aberration de la lumière
vignette|La lumière en provenance de l'endroit 1 semblera provenir de l'endroit 2 pour un télescope en mouvement à cause de la vitesse finie de la lumière, c'est l'aberration de la lumière. L'aberration de la lumière est un phénomène optique qui se traduit par le fait que la direction apparente d'une source lumineuse dépend de la vitesse de celui qui l'observe (plus exactement de la composante de cette vitesse perpendiculaire à la direction d'observation), de la même façon que pour un passager d'un véhicule qui se déplace par exemple à l'horizontale, la pluie semble tomber depuis une direction située vers l'avant, et non selon la verticale.
Afficher plus
MOOCs associés (2)
Space Mission Design and Operations
Learn the concepts used in the design of space missions, manned or unmanned, and operations, based on the professional experience of the lecturer.
Space Mission Design and Operations
Learn the concepts used in the design of space missions, manned or unmanned, and operations, based on the professional experience of the lecturer.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.