Sparse decomposition over multi-component redundant dictionaries
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
The theme of this thesis revolves around three important manifestations of light, namely its corpuscular, wave and electromagnetic nature. Our goal is to exploit these principles to analyze, design and build imaging modalities by developing new signal proc ...
We investigate a compressive sensing framework in which the sensors introduce a distortion to the measurements in the form of unknown gains. We focus on blind calibration, using measures performed on multiple unknown (but sparse) signals and formulate the ...
Institute of Electrical and Electronics Engineers2014
The standard approach to compressive sampling considers recovering an unknown deterministic signal with certain known structure, and designing the sub-sampling pattern and recovery algorithm based on the known structure. This approach requires looking for ...
This paper introduces a novel algorithm for sparse approximation in redundant dictionaries called the M-term pursuit (MTP). This algorithm decomposes a signal into a linear combination of atoms that are selected in order to represent the main signal compon ...
Institute of Electrical and Electronics Engineers2012
Over the past decade researches in applied mathematics, signal processing and communications have introduced compressive sampling (CS) as an alternative to the Shannon sampling theorem. The two key observations making CS theory widely applicable to numerou ...
Compressed sensing is a new trend in signal processing for efficient sampling and signal acquisition. The idea is that most real-world signals have a sparse representation in an appropriate basis and this can be exploited to capture the sparse signal by ta ...
Effective representation methods and proper signal priors are crucial in most signal processing applications. In this thesis we focus on different structured models and we design appropriate schemes that allow the discovery of low dimensional latent struct ...
Choosing a distance preserving measure or metric is fun- damental to many signal processing algorithms, such as k- means, nearest neighbor searches, hashing, and compressive sensing. In virtually all these applications, the efficiency of the signal process ...
Sparsity has been one of the major drives in signal processing in the last decade. Structured sparsity has also lately emerged as a way to enrich signal priors towards more meaningful and accurate representations. In this paper we propose a new structured ...
In bus communications methods and apparatus, a first set of physical signals representing the information to be conveyed over the bus is provided, and mapped to a codeword of a sparse signaling code, wherein a codeword is representable as a vector of a plu ...