Comparison and Validation of Tissue Modelization and Statistical Classification Methods in T1-weighted MR Brain Images
Publications associées (45)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
This thesis addresses the problem of recovering the 3-D shape of a deformable object in single images, or image sequences acquired by a monocular video camera, given that a 3-D template shape and a template image of the object are available. While being a ...
Fluorescence microscopy is a widespread tool in biological research. It is the primary modality for bioimaging and empowers the study and analysis of multitudes of biological processes. It can be applied to fixed biosamples, that is samples with frozen bio ...
Purpose: We present a 3-dimensional patient-specific eye model from magnetic resonance imaging (MRI) for proton therapy treatment planning of uveal melanoma (UM). During MRI acquisition of UM patients, the point fixation can be difficult and, together with ...
Near infrared optical tomography (NIROT) is an emerging modality that enables imaging the oxygenation of tissue, which is a biomarker of tremendous clinical relevance. Measuring in reflectance is usually required when NIROT is applied in clinical scenarios ...
Distributed systems are becoming the tool to reach high transmission rates in wireless environments. However, these systems are exposed to macroscopic and microscopic fading because they have the nodes (antennas) spatially distributed. This letter proposes ...
Classification of brain tumor is one of the most vital tasks within medical image processing. Classification of images greatly depends on the features extracted from the image, and thus, feature extraction plays a great role in the correct classification o ...
Sensor fusion is a fundamental process in robotic systems as it extends the perceptual range and increases robustness in real-world operations. Current multi-sensor deep learning based semantic segmentation approaches do not provide robustness to under-per ...
Visual scene recognition deals with the problem of automatically recognizing the high-level semantic concept describing a given image as a whole, such as the environment in which the scene is occurring (e.g. a mountain), or the event that is taking place ( ...
École Polytechnique Fédérale de Lausanne (EPFL)2014
,
We propose a novel method to accurately reconstruct a set of images representing a single scene from few linear multi-view measurements. Each observed image is modeled as the sum of a background image and a foreground one. The background image is common to ...
Visual scene recognition deals with the problem of automatically recognizing the high-level semantic concept describing a given image as a whole, such as the environment in which the scene is occurring (e.g. a mountain), or the event that is taking place ( ...