A simple test to check the optimality of a sparse signal approximation
Publications associées (72)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Sparse methods are widely used in image and audio processing for denoising and classification, but there have been few previous applications to neural signals for brain-computer interfaces (BCIs). We used the dictionary- learning algorithm K-SVD, coupled w ...
We propose a new method for imaging sound speed in breast tissue from measurements obtained by ultrasound tomography (UST) scan- ners. Given the measurements, our algorithm finds a sparse image representation in an overcomplete dictionary that is adapted t ...
We introduce the Multiplicative Update Selector and Estimator (MUSE) algorithm for sparse approximation in under-determined linear regression problems. Given ƒ = Φα* + μ, the MUSE provably and efficiently finds a k-sparse vector α̂ such that ∥Φα̂ − ƒ∥∞ ≤ ∥ ...
This article treats the problem of learning a dictionary providing sparse representations for a given signal class, via ℓ1-minimisation. The problem can also be seen as factorising a \ddim×\nsig matrix $Y=(y_1 \ldots y_\nsig), , y_n\in \R^\ ...
Institute of Electrical and Electronics Engineers2010
With the flood of information available today the question how to deal with high dimensional data/signals, which are cumbersome to handle, to calculate with and to store, is highly important. One approach to reducing this flood is to find sparse signal rep ...
We develop an efficient learning framework to construct signal dictionaries for sparse representation by selecting the dictionary columns from multiple candidate bases. By sparse, we mean that only a few dictionary elements, compared to the ambient signal ...
In this work we present a new greedy algorithm for sparse approximation called LocOMP. LocOMP is meant to be run on local dictionaries made of atoms with much shorter supports than the signal length. This notably encompasses shift-invariant dictionaries an ...
The theory of Compressive Sensing (CS) exploits a well-known concept used in signal compression – sparsity – to design new, efficient techniques for signal acquisition. CS theory states that for a length-N signal x with sparsity level K, M = O(K log(N/K)) ...
We consider the probe of astrophysical signals through radio interferometers with small field of view and baselines with non-negligible and constant component in the pointing direction. In this context, the visibilities measured essentially identify with a ...
This poster is a summary of recent work published in: Spread spectrum for imaging techniques in radio interferometry, Y. Wiaux, G. Puy, Y. Boursier, and P. Vandergheynst, Mon. Not. R. Astron. Soc., 2009, Preprint arXiv:0907.0944v1. We consider the probe of ...