Rate of convergence estimates for the spectral approximation of a generalized eigenvalue problem
Publications associées (35)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
The numerical solution of singular eigenvalue problems is complicated by the fact that small perturbations of the coefficients may have an arbitrarily bad effect on eigenvalue accuracy. However, it has been known for a long time that such perturbations are ...
SPRINGER2023
In this thesis we address the computation of a spectral decomposition for symmetric
banded matrices. In light of dealing with large-scale matrices, where classical dense
linear algebra routines are not applicable, it is essential to design alternative tech ...
We present asymptotically sharp inequalities, containing a 2nd term, for the Dirichlet and Neumann eigenvalues of the Laplacian on a domain, which are complementary to the familiar Berezin-Li-Yau and Kroger inequalities in the limit as the eigenvalues tend ...
This work is concerned with approximating the smallest eigenvalue of a parameter-dependent Hermitian matrix A(μ) for many parameter values μ ∈ RP. The design of reliable and efficient algorithms for addressing this task is of importance in a variety of app ...
The locally optimal block preconditioned conjugate gradient (LOBPCG) algorithm is a popular approach for computing a few smallest eigenvalues and the corresponding eigenvectors of a large Hermitian positive definite matrix A. In this work, we propose a mix ...
This work is concerned with approximating the smallest eigenvalue of a parameter-dependent Hermitian matrix A(mu) for many parameter values mu in a domain D subset of R-P. The design of reliable and efficient algorithms for addressing this task is of impor ...
Adjoint-based sensitivity analysis is routinely used today to assess efficiently the effect of open-loop control on the linear stability properties of unstable flows. Sensitivity maps identify regions where small-amplitude control is the most effective, i. ...
Polarimetric incoherent target decomposition aims at accessing physical parameters of illuminated scatters through the analysis of the target coherence or covariance matrix. In this framework, independent component analysis (ICA) was recently proposed as a ...
Institute of Electrical and Electronics Engineers2016
For a Hamiltonian matrix with purely imaginary eigenvalues, we aim to determine the nearest Hamiltonian matrix such that some or all eigenvalues leave the imaginary axis. Conversely, for a Hamiltonian matrix with all eigenvalues lying off the imaginary axi ...
The QZ algorithm for computing eigenvalues and eigenvectors of a matrix pencil A - lambda B requires that the matrices first be reduced to Hessenberg-triangular (HT) form. The current method of choice for HT reduction relies entirely on Givens rotations re ...