Vacuum-bag processing of honeycomb sandwich structures faces particular challenges compared to autoclave sandwich fabrication for aeronautics, a consequence of using, at the most, atmospheric pressure for their manufacturing. In particular, the adhesion of the skin to the honeycomb core is reduced and the skins tend to have higher values of porosity. On the other hand, autoclave processing is expensive, in particular for large structures, and a growing interest has been observed for vacuum-bag only processing of sandwich structures. During honeycomb sandwich cure, the skin represents a barrier to air flow between the honeycomb and the vacuum-bag so the air transport through the prepreg, adhesive and consumables or other additional materials may be a crucial factor to increase skin debulking, reduce void content and extract air from the honeycomb cells. The pressure inside the honeycomb is, therefore, a result of the through thickness permeability to air of the skins and vacuum pump work. The goal of this thesis is to develop methods for improving the low pressure processing of honeycomb sandwich structures by quantifying the through thickness air permeability of fibre reinforced composites during cure and analysing related processing issues and governing phenomena. An experimental method based on a falling pressure measurement was proposed to evaluate the through thickness air permeability of prepregs during cure, with two set-up variants. One concerns the measurement of the inherent air permeability and the other applies to processing conditions, implying the use of both consumables and vacuum-bag. The methods were successfully tested and fulfil the criterions used in soil science for the evaluation of the air permeability. Prepreg and adhesive permeabilities were determined separately and in skin combination. Prepreg permeability to air during cure varies between 10-19 m2 and 10-17 m2 and was found to depend on the evolution of the resin viscosity, which shifts from an initially immobile phase to a mobile one and then back to an immobile phase. The adhesive film was found to have very low initial permeability, at least two orders of magnitude lower than that of the prepreg. A range of initial skin through thickness air permeability could be achieved by perforating the prepreg plies, the adhesive layer, or a combination of both. An adhesive deposition method which results in the centre of honeycomb cells being free of adhesive was also tested. A corresponding range of achievable pressure was measured inside the honeycomb. The evolution of the through thickness permeability with the curing cycle was determined for each case. The adhesive layer was identified as the element that reduces the initial through thickness air permeability the most in skin manufacturing. This suggests that one of the ways of increasing the initial through thickness air permeability of the skin is to modify the permeability of the adhesive layer. The role of the resulting
Josephine Anna Eleanor Hughes, Sudong Lee
Biranche Tandon, Nicolas Tissot
Silvestro Micera, Solaiman Shokur, Outman Akouissi, Jonathan Louis Muheim, Francesco Iberite