Machine simpleOn appelle machine simple un dispositif mécanique élémentaire permettant de transformer une force de module et de direction déterminés en une force dont le module ou la direction sont différents. Selon les Anciens, il y a cinq machines simples : le levier, la poulie, le coin, le treuil et la vis sans fin. Au Livre II de ses Mécaniques, Héron d'Alexandrie a étudié chacune d'elles. La Renaissance identifie une sixième : le plan incliné. Généralement, les machines simples sont classées en six à huit types : levier ; roue ; poulie ; coin ; plan incliné vis ; engrenage ; treuil.
Wavelet transformIn mathematics, a wavelet series is a representation of a square-integrable (real- or complex-valued) function by a certain orthonormal series generated by a wavelet. This article provides a formal, mathematical definition of an orthonormal wavelet and of the integral wavelet transform. A function is called an orthonormal wavelet if it can be used to define a Hilbert basis, that is a complete orthonormal system, for the Hilbert space of square integrable functions.
Discrete wavelet transformIn numerical analysis and functional analysis, a discrete wavelet transform (DWT) is any wavelet transform for which the wavelets are discretely sampled. As with other wavelet transforms, a key advantage it has over Fourier transforms is temporal resolution: it captures both frequency and location information (location in time). Haar wavelet The first DWT was invented by Hungarian mathematician Alfréd Haar. For an input represented by a list of numbers, the Haar wavelet transform may be considered to pair up input values, storing the difference and passing the sum.
CinématiqueEn physique, la cinématique (du grec kinêma, le mouvement) est l'étude des mouvements indépendamment des causes qui les produisent, ou, plus exactement, l'étude de tous les mouvements possibles. À côté de la notion d'espace qui est l'objet de la géométrie, la cinématique introduit la notion de temps. À ne pas confondre avec la , un terme plus général qui concerne la vitesse et les mécanismes d'une grande variété de processus ; en mécanique, cinétique est utilisé comme adjectif pour qualifier deux grandeurs impliquant aussi la masse : le moment cinétique et l'énergie cinétique.
Cinématique inverseLa cinématique inverse (souvent abrégée IK, de l'anglais inverse kinematics) désigne l'ensemble des méthodes de calcul des positions et rotations d'un modèle articulaire afin d'obtenir une pose désirée. Les méthodes de cinématique inverse sont principalement utilisées en infographie, en robotique, en animation ou encore en chimie. Le terme cinématique inverse renvoie au fait que la résolution des calculs est généralement basée sur les équations cinématiques du modèle articulaire.
Chaîne cinématique (robotique)thumb|Exemple de chaîne cinématique du corps humain. Le genou est représenté comme une liaison pivot, la hanche par une liaison sphérique, etc. La chaîne cinématique est un modèle mathématique des systèmes mécaniques dans lequel un ensemble de solides indéformables (les "corps" ou "liens" du système) sont connectés entre eux par des articulations. Les articulations d'une chaîne cinématique sont des liaisons mécaniques.
Ondelettethumb|Ondelette de Daubechies d'ordre 2. Une ondelette est une fonction à la base de la décomposition en ondelettes, décomposition similaire à la transformée de Fourier à court terme, utilisée dans le traitement du signal. Elle correspond à l'idée intuitive d'une fonction correspondant à une petite oscillation, d'où son nom. Cependant, elle comporte deux différences majeures avec la transformée de Fourier à court terme : elle peut mettre en œuvre une base différente, non forcément sinusoïdale ; il existe une relation entre la largeur de l'enveloppe et la fréquence des oscillations : on effectue ainsi une homothétie de l'ondelette, et non seulement de l'oscillation.
Continuous wavelet transformIn mathematics, the continuous wavelet transform (CWT) is a formal (i.e., non-numerical) tool that provides an overcomplete representation of a signal by letting the translation and scale parameter of the wavelets vary continuously. The continuous wavelet transform of a function at a scale (a>0) and translational value is expressed by the following integral where is a continuous function in both the time domain and the frequency domain called the mother wavelet and the overline represents operation of complex conjugate.
Ondelette de HaarL'ondelette de Haar, ou fonction de Rademacher, est une ondelette créée par Alfréd Haar en 1909. On considère que c'est la première ondelette connue. Il s'agit d'une fonction constante par morceaux, ce qui en fait l'ondelette la plus simple à comprendre et à implémenter. L'ondelette de Haar peut être généralisée par ce qu'on appelle le système de Haar. La fonction-mère des ondelettes de Haar est une fonction constante par morceaux : La fonction d'échelle associée est alors une fonction porte : Le système de Haar est une suite de fonctions continues par morceaux, appartenant à pour .
Morlet waveletIn mathematics, the Morlet wavelet (or Gabor wavelet) is a wavelet composed of a complex exponential (carrier) multiplied by a Gaussian window (envelope). This wavelet is closely related to human perception, both hearing and vision. Wavelet#History In 1946, physicist Dennis Gabor, applying ideas from quantum physics, introduced the use of Gaussian-windowed sinusoids for time-frequency decomposition, which he referred to as atoms, and which provide the best trade-off between spatial and frequency resolution.