Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
This paper presents work on sensor-based motion planning in initially unknown dynamic environments. Motion detection and probabilistic motion modeling are combined with a smooth navigation function to perform on-line path planning and replanning in cluttered dynamic environments such as public exhibitions. The SLIP algorithm, an extension of Iterative Closest Point, combines motion detection from a mobile platform with position estimation. This information is then processed using probabilistic motion prediction to yield a co-occurrence risk that unifies dynamic and static elements. The risk is translated into traversal costs for an E* path planner. It produces smooth paths that trade off collision risk versus detours.
David Andrew Barry, Ulrich Lemmin, Daniel Sage, Abolfazl Irani Rahaghi
Jean-Pierre Hubaux, Kévin Clément Huguenin, Italo Ivan Dacosta Petrocelli, Mohammad Emtiyaz Khan, Joana Catarina Soares Machado, Katarzyna Lucja Olejnik