Publication

Information Flow Decomposition for Network Coding

Résumé

The famous min-cut, max-flow theorem states that a source node can send a commodity through a network to a sink node at the rate determined by the flow of the min-cut separating the source and the sink. Recently it has been shown that by linear re-encoding at nodes in communications networks, the min-cut rate can be also achieved in multicasting to several sinks. Constructing such coding schemes efficiently is the subject of current research. The main idea in this paper is the identification of structural properties of multicast configurations, by decompositing the information flows into a minimal number of subtrees. This decomposition allows us to show that very different networks are equivalent from the coding point of view, and offers a method to identify such equivalence classes. It also allows us to divide the network coding problem into two almost independent problems: one of graph theory and the other of classical channel coding theory. This approach to network coding enables us to derive tight bounds on the network code alphabet size and calculate the throughput improvement network coding can offer for different configurations. But perhaps the most significant strength of our approach concerns future network coding practice. Namely, we propose algorithms to specify the coding operations at network nodes without the knowledge of the overall network topology. Such decentralized designs facilitate the construction of codes which can easily accommodate future changes in the network, e.g., addition of receivers and loss of links.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.