Habileté de construction visuo-spatialeL'habileté de construction visuo-spatiale ou visuoconstruction désigne l’ensemble des processus du cerveau qui permettent d'analyser, de comprendre et de se représenter l’espace (l'environnement) en deux ou trois dimensions. Parmi les processus nécessaires pour y arriver, on note l'imagerie et la navigation mentale, l'évaluation des distances et de la profondeur ainsi que la construction visuo-spatiale. Plus spécifiquement, le processus de construction visuo-spatiale ou la visuo-construction réfère à la capacité à organiser des parties afin de produire une forme.
Représentation d'étatEn automatique, une représentation d'état permet de modéliser un système dynamique en utilisant des variables d'état. Cette représentation, qui peut être linéaire ou non, continue ou discrète, permet de déterminer l'état du système à n'importe quel instant futur si l'on connaît l'état à l'instant initial et le comportement des variables exogènes qui influent sur le système. La représentation d'état du système permet de connaître son comportement "interne" et pas seulement son comportement "externe" comme c'est le cas avec sa fonction de transfert.
ComportementLe terme « comportement » désigne les actions d'un être vivant. Il a été introduit en psychologie française en 1908 par Henri Piéron comme équivalent français de l'anglais-américain behavior. On l'utilise notamment en éthologie (humaine et animale) ou en psychologie expérimentale. Il peut aussi être pris comme équivalent de conduite dans l'approche psychanalytique. Le comportement d'un être vivant est la partie de son activité qui se manifeste à un observateur.
Représentation irréductibleEn mathématiques et plus précisément en théorie des représentations, une représentation irréductible est une représentation non nulle qui n'admet qu'elle-même et la représentation nulle comme sous-représentations. Le présent article traite des représentations d'un groupe. Le théorème de Maschke démontre que dans de nombreux cas, une représentation est somme directe de représentations irréductibles. Dans le cas des groupes finis, les informations liés aux représentations irréductibles sont encodées dans la table de caractères du groupe.
Cellule de grillethumb|right|198px|Trajectoire d'un rat dans un environnement carré (représenté en noir). Les points rouges indiquent les emplacements où une cellule de grille entorhinal s'est activée. Une cellule de grille est un type de neurone présent dans le cerveau de nombreuses espèces qui leur permet de connaître leur position dans l'espace. right|thumb|150x150px|Les cellules de grille tirent leur nom du fait qu'en reliant les centres de leurs champs d'activation, on obtient une grille triangulaire.
Robotvignette|Atlas (2013), robot androïde de Boston Dynamics vignette|Bras manipulateurs dans un laboratoire (2009) vignette|NAO (2006), robot humanoïde éducatif d'Aldebaran Robotics vignette|DER1 (2005), un actroïde d'accueil vignette|Roomba (2002), un robot ménager Un robot est un dispositif mécatronique (alliant mécanique, électronique et informatique) conçu pour accomplir automatiquement des tâches imitant ou reproduisant, dans un domaine précis, des actions humaines.
Apprentissage par renforcementEn intelligence artificielle, plus précisément en apprentissage automatique, l'apprentissage par renforcement consiste, pour un agent autonome ( robot, agent conversationnel, personnage dans un jeu vidéo), à apprendre les actions à prendre, à partir d'expériences, de façon à optimiser une récompense quantitative au cours du temps. L'agent est plongé au sein d'un environnement et prend ses décisions en fonction de son état courant. En retour, l'environnement procure à l'agent une récompense, qui peut être positive ou négative.
Apprentissage par renforcement profondL'apprentissage par renforcement profond (en anglais : deep reinforcement learning ou deep RL) est un sous-domaine de l'apprentissage automatique (en anglais : machine learning) qui combine l'apprentissage par renforcement et l'apprentissage profond (en anglais : deep learning). L'apprentissage par renforcement considère le problème d'un agent informatique (par exemple, un robot, un agent conversationnel, un personnage dans un jeu vidéo, etc.) qui apprend à prendre des décisions par essais et erreurs.
Base de données spatialesUne base de données spatiales est une base de données optimisée pour stocker et interroger des données reliées à des objets référencés géographiquement, y compris des points, les lignes et des polygones. Alors que les bases de données classiques peuvent comprendre différents types de données numériques et caractères, des fonctions additionnelles ont besoin d'être ajoutées pour traiter les types de données spatiales. Celles-ci sont typiquement appelées géométrie ou caractère.
Robotique molleLa robotique molle () est un domaine de la robotique. Ce domaine traite des « robots mous » incluant certains types de drones, et construits en matériaux ou structures souples, élastiques ou déformables tels que le silicone, le plastique, le caoutchouc et autres polymères, les tissus, etc., ou des pièces mécaniques déformables utilisées en robotique, par exemple les ressorts, les élastiques ou les absorbeurs de chocs ou de vibrations.