Programmation par contraintesLa programmation par contraintes (PPC, ou CP pour constraint programming en anglais) est un paradigme de programmation apparu dans les années 1970 et 1980 permettant de résoudre des problèmes combinatoires de grande taille tels que les problèmes de planification et d'ordonnancement. En programmation par contraintes, on sépare la partie modélisation à l'aide de problèmes de satisfaction de contraintes (ou CSP pour Constraint Satisfaction Problem), de la partie résolution dont la particularité réside dans l'utilisation active des contraintes du problème pour réduire la taille de l'espace des solutions à parcourir (on parle de propagation de contraintes).
Statistique de testEn statistique, une statistique de test - aussi appelée variable de décision - est une variable aléatoire construite à partir d'un échantillon statistique permettant de formuler une règle de décision pour un test statistique. Cette statistique n'est pas unique, ce qui permet de construire différentes règles de décision et de les comparer à l'aide de la notion de puissance statistique. Il est impératif de connaitre sa loi de probabilité lorsque l'hypothèse nulle est vraie. Sa loi sous l'hypothèse alternative est souvent inconnue.
Test statistiqueEn statistiques, un test, ou test d'hypothèse, est une procédure de décision entre deux hypothèses. Il s'agit d'une démarche consistant à rejeter ou à ne pas rejeter une hypothèse statistique, appelée hypothèse nulle, en fonction d'un échantillon de données. Il s'agit de statistique inférentielle : à partir de calculs réalisés sur des données observées, on émet des conclusions sur la population, en leur rattachant des risques d'être erronées. Hypothèse nulle L'hypothèse nulle notée H est celle que l'on considère vraie a priori.
Test de StudentEn statistique, un test de Student, ou test t, désigne n'importe quel test statistique paramétrique où la statistique de test calculée suit une loi de Student lorsque l’hypothèse nulle est vraie. gauche|vignette|Façade de la brasserie historique Guinness de St. James. vignette|William Sealy Gosset, qui inventa le test t, sous le pseudonyme Student. Le test de Student et la loi de probabilités qui lui correspond ont été publiés en 1908 dans la revue Biometrika par William Gosset.
Test FEn statistique, un test F est un terme générique désignant tout test statistique dans lequel la statistique de test suit la loi de Fisher sous l'hypothèse nulle. Ce type de tests est souvent utilisé lors de la comparaison de modèles statistiques qui ont été ajustés sur un ensemble de données, afin d'identifier le modèle qui correspond le mieux à la population à partir de laquelle les données ont été échantillonnées. Les tests F dits "exacts" sont ceux pour lesquels les modèles ont été ajustés aux données par la méthode des moindres carrés.
Test du rapport de vraisemblanceEn statistiques, le test du rapport de vraisemblance est un test statistique qui permet de tester un modèle paramétrique contraint contre un non contraint. Si on appelle le vecteur des paramètres estimés par la méthode du maximum de vraisemblance, on considère un test du type : contre On définit alors l'estimateur du maximum de vraisemblance et l'estimateur du maximum de vraisemblance sous .
Optimisation (mathématiques)L'optimisation est une branche des mathématiques cherchant à modéliser, à analyser et à résoudre analytiquement ou numériquement les problèmes qui consistent à minimiser ou maximiser une fonction sur un ensemble. L’optimisation joue un rôle important en recherche opérationnelle (domaine à la frontière entre l'informatique, les mathématiques et l'économie), dans les mathématiques appliquées (fondamentales pour l'industrie et l'ingénierie), en analyse et en analyse numérique, en statistique pour l’estimation du maximum de vraisemblance d’une distribution, pour la recherche de stratégies dans le cadre de la théorie des jeux, ou encore en théorie du contrôle et de la commande.
Retour sur traceEn informatique, plus précisément en algorithmique, le retour sur trace ou retour arrière (appelé aussi backtracking en anglais) est une famille d'algorithmes pour trouver des solutions à des problèmes algorithmiques, notamment de satisfaction de contraintes. Contrairement à une recherche exhaustive, un algorithme de retour sur trace construit incrémentalement des solutions candidates. Il abandonne la construction lorsqu'il ne peut compléter le candidat courant en solution valide.