Web sémantiquevignette|300px|droite|Logo du W3C pour le Web sémantique Le Web sémantique, ou toile sémantique, est une extension du Web standardisée par le World Wide Web Consortium (W3C). Ces standards encouragent l'utilisation de formats de données et de protocoles d'échange normés sur le Web, en s'appuyant sur le modèle Resource Description Framework (RDF). Le Web sémantique est par certains qualifié de Web 3.0. Selon le W3C, . L'expression a été inventée par Tim Berners-Lee (inventeur du Web et directeur du W3C), qui supervise le développement des technologies communes du Web sémantique.
Science des donnéesLa science des données est l'étude de l’extraction automatisée de connaissance à partir de grands ensembles de données. Plus précisément, la science des données est un domaine interdisciplinaire qui utilise des méthodes, des processus, des algorithmes et des systèmes scientifiques pour extraire des connaissances et des idées à partir de nombreuses données structurées ou non . Elle est souvent associée aux données massives et à l'analyse des données.
Réseau sémantiqueUn réseau sémantique est un graphe marqué destiné à la représentation des connaissances, qui représente des relations sémantiques entre concepts. Le graphe est orienté ou non orienté. Ses sommets représentent les concepts, et les liens entre les sommets (nœuds) représentent les relations sémantiques, reliant les champs lexicaux. Un réseau sémantique peut être instancié, par exemple,dans une base de données orientée graphes ou un schéma conceptuel. Les réseaux sémantiques normalisés sont exprimés sous forme de triplets RDF.
Exploration de donnéesL’exploration de données, connue aussi sous l'expression de fouille de données, forage de données, prospection de données, data mining, ou encore extraction de connaissances à partir de données, a pour objet l’extraction d'un savoir ou d'une connaissance à partir de grandes quantités de données, par des méthodes automatiques ou semi-automatiques.
Entrepôt de donnéesvignette|redresse=1.5|Vue d'ensemble d'une architecture entrepôt de données. Le terme entrepôt de données ou EDD (ou base de données décisionnelle ; en anglais, data warehouse ou DWH) désigne une base de données utilisée pour collecter, ordonner, journaliser et stocker des informations provenant de base de données opérationnelles et fournir ainsi un socle à l'aide à la décision en entreprise. Un entrepôt de données est une base de données regroupant une partie ou l'ensemble des données fonctionnelles d'une entreprise.
Modèle de donnéesEn informatique, un modèle de données est un modèle qui décrit la manière dont sont représentées les données dans une organisation métier, un système d'information ou une base de données. Le terme modèle de données peut avoir deux significations : Un modèle de données théorique, c'est-à-dire une description formelle ou un modèle mathématique. Voir aussi modèle de base de données Un modèle de données instance, c'est-à-dire qui applique un modèle de données théorique (modélisation des données) pour créer un modèle de données instance.
Consolidation informatiqueLa consolidation est en informatique le regroupement cohérent de données. Elle concerne généralement des données organisées logiquement ou liées entre elles. Plus spécifiquement pour les tableurs, il s’agit du regroupement de plusieurs tableaux issus de feuilles différentes (les feuilles sont des composantes des tableurs) voire de classeurs différents. La consolidation de données consiste à rassembler plusieurs données semblables afin d’obtenir un rapport plus facile à consulter que l’information brute présente sur le serveur, avec le moins de perte d’information possible.
Analyse des donnéesL’analyse des données (aussi appelée analyse exploratoire des données ou AED) est une famille de méthodes statistiques dont les principales caractéristiques sont d'être multidimensionnelles et descriptives. Dans l'acception française, la terminologie « analyse des données » désigne donc un sous-ensemble de ce qui est appelé plus généralement la statistique multivariée. Certaines méthodes, pour la plupart géométriques, aident à faire ressortir les relations pouvant exister entre les différentes données et à en tirer une information statistique qui permet de décrire de façon plus succincte les principales informations contenues dans ces données.
Predictive modellingPredictive modelling uses statistics to predict outcomes. Most often the event one wants to predict is in the future, but predictive modelling can be applied to any type of unknown event, regardless of when it occurred. For example, predictive models are often used to detect crimes and identify suspects, after the crime has taken place. In many cases, the model is chosen on the basis of detection theory to try to guess the probability of an outcome given a set amount of input data, for example given an email determining how likely that it is spam.
Big dataLe big data ( « grosses données » en anglais), les mégadonnées ou les données massives, désigne les ressources d’informations dont les caractéristiques en termes de volume, de vélocité et de variété imposent l’utilisation de technologies et de méthodes analytiques particulières pour créer de la valeur, et qui dépassent en général les capacités d'une seule et unique machine et nécessitent des traitements parallélisés. L’explosion quantitative (et souvent redondante) des données numériques permet une nouvelle approche pour analyser le monde.