Ferdinand Georg FrobeniusFerdinand Georg Frobenius, connu aussi sous le nom de Georg Frobenius, est un mathématicien allemand, né le à Charlottenbourg (Prusse, aujourd'hui sous-municipalité de Berlin) et mort le à Berlin (Allemagne). Il suit des études aux universités de Göttingen et de Berlin et à l'École polytechnique fédérale de Zurich. Il est l'un des premiers, avec Heinrich Weber, à s'intéresser à la théorie des groupes pour elle-même et non comme outil, et il redémontre dans ce cadre les théorèmes de Sylow.
Glossary of arithmetic and diophantine geometryThis is a glossary of arithmetic and diophantine geometry in mathematics, areas growing out of the traditional study of Diophantine equations to encompass large parts of number theory and algebraic geometry. Much of the theory is in the form of proposed conjectures, which can be related at various levels of generality. Diophantine geometry in general is the study of algebraic varieties V over fields K that are finitely generated over their prime fields—including as of special interest number fields and finite fields—and over local fields.
Cyclic orderIn mathematics, a cyclic order is a way to arrange a set of objects in a circle. Unlike most structures in order theory, a cyclic order is not modeled as a binary relation, such as "a < b". One does not say that east is "more clockwise" than west. Instead, a cyclic order is defined as a ternary relation [a, b, c], meaning "after a, one reaches b before c". For example, [June, October, February], but not [June, February, October], cf. picture. A ternary relation is called a cyclic order if it is cyclic, asymmetric, transitive, and connected.
Théorème de la progression arithmétiqueEn mathématiques, et plus précisément en théorie des nombres, le théorème de la progression arithmétique, s'énonce de la façon suivante : Ce théorème est une généralisation du théorème d'Euclide sur les nombres premiers. Sa première démonstration, due au mathématicien allemand Gustav Lejeune Dirichlet en 1838, fait appel aux résultats de l'arithmétique modulaire et à ceux de la théorie analytique des nombres. La première démonstration « élémentaire » est due à Atle Selberg en 1949.
Multiplicative group of integers modulo nIn modular arithmetic, the integers coprime (relatively prime) to n from the set of n non-negative integers form a group under multiplication modulo n, called the multiplicative group of integers modulo n. Equivalently, the elements of this group can be thought of as the congruence classes, also known as residues modulo n, that are coprime to n. Hence another name is the group of primitive residue classes modulo n. In the theory of rings, a branch of abstract algebra, it is described as the group of units of the ring of integers modulo n.