Ferdinand Georg Frobenius, connu aussi sous le nom de Georg Frobenius, est un mathématicien allemand, né le à Charlottenbourg (Prusse, aujourd'hui sous-municipalité de Berlin) et mort le à Berlin (Allemagne).
Il suit des études aux universités de Göttingen et de Berlin et à l'École polytechnique fédérale de Zurich. Il est l'un des premiers, avec Heinrich Weber, à s'intéresser à la théorie des groupes pour elle-même et non comme outil, et il redémontre dans ce cadre les théorèmes de Sylow. On lui doit l'introduction des caractères d'un . Il travaille aussi en algèbre linéaire et donne en 1878 la première démonstration générale du théorème de Cayley-Hamilton. Il émet l'hypothèse, démontrée seulement en 1904 par Kurt Hensel, que les polynômes minimal et caractéristique d'un endomorphisme ont les mêmes facteurs irréductibles. En revanche, il démontre le théorème qui porte maintenant son nom (prouvé indépendamment par le mathématicien américain Charles Sanders Peirce) qui, dans la terminologie moderne, exprime que les seules algèbres associatives de dimension finie et sans diviseur de zéro sur le corps des réels, sont le corps des réels, celui des complexes et le corps gauche des quaternions de Hamilton. En analyse, il étudie les fonctions elliptiques et les équations aux dérivées partielles, et s'intéresse à la théorie des nombres, en particulier à la fonction zêta de Riemann et aux nombres algébriques.
En 1892, il devient membre de l'Académie royale des sciences et des lettres de Berlin.
Durant la deuxième moitié de sa carrière, la théorie des groupes a constitué l'un des principaux intérêts de Frobenius. L'une de ses premières contributions a été la redémonstration des théorèmes de Sylow pour un groupe abstrait (la preuve originelle de Sylow était formulée pour un groupe de permutations). La preuve du premier théorème de Sylow (sur l'existence des sous-groupes de Sylow) élaborée par Frobenius est encore celle la plus enseignée de nos jours.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Group representation theory studies the actions of groups on vector spaces. This allows the use of linear algebra to study certain group theoretical questions. In this course the groups in question wi
En mathématiques le caractère d'une représentation d'un groupe fini est un outil utilisé pour analyser les représentations d'un groupe fini. Le caractère d'une représentation (V, ρ) d'un groupe G correspond à l'application de G dans le corps de l'espace de la représentation qui à un élément s associe la trace de l'image de s par ρ. Cette définition n'est pas compatible avec celle des caractères d'un groupe en général qui ne prend ses valeurs que dans l'ensemble des complexes non nuls.
vignette|Ferdinand Georg Frobenius, fondateur de la théorie de la représentation des groupes. En mathématiques et plus précisément en théorie des groupes, la théorie des représentations d'un groupe fini traite des représentations d'un groupe G dans le cas particulier où G est un groupe fini. Cet article traite de l'aspect mathématique et, de même que l'article de synthèse « Représentations d'un groupe fini », n'aborde que les représentations linéaires de G (par opposition aux représentations projectives ou ).
vignette|Le Rubik's cube illustre la notion de groupes de permutations. Voir groupe du Rubik's Cube. La théorie des groupes est en mathématique, plus précisément en algèbre générale, la discipline qui étudie les structures algébriques appelées groupes. Le développement de la théorie des groupes est issu de la théorie des nombres, de la théorie des équations algébriques et de la géométrie. La théorie des groupes est étroitement liée à la théorie des représentations.
Couvre les fonctions de base des éléments rectangulaires quadratiques et biquadratiques et la famille sérendipale des éléments finis rectangulaires réguliers.
Explore les groupes de décomposition, les sous-groupes d'inertie, la théorie de Galois, les nombres premiers non-ramifiés et les champs cyclotomiques dans les actions de groupe et les extensions de champ.
We consider the following integer feasibility problem: Given positive integer numbers a0, a1,&mellip;,an with gcd(a1,&mellip;,an) = 1 and a = (a1,&mellip;,an), does there exist a ...
2004
We provide a Frobenius type existence result for finite-dimensional invariant submanifolds for stochastic equations in infinite dimension, in the spirit of Da Prato and Zabczyk [5]. We recapture and make use of the convenient calculus on Frechet spaces, as ...
2003
We present recently developed geometric methods for the analysis of finite dimensional term structure models of the interest rates. This includes an extension of the Frobenius theorem for Fr´echet spaces in particular. This approach puts new light on many ...