Graphe bipartiEn théorie des graphes, un graphe est dit biparti si son ensemble de sommets peut être divisé en deux sous-ensembles disjoints et tels que chaque arête ait une extrémité dans et l'autre dans . Un graphe biparti permet notamment de représenter une relation binaire. Il existe plusieurs façons de caractériser un graphe biparti. Par le nombre chromatique Les graphes bipartis sont les graphes dont le nombre chromatique est inférieur ou égal à 2. Par la longueur des cycles Un graphe est biparti si et seulement s'il ne contient pas de cycle impair.
Algorithme de rechercheEn informatique, un algorithme de recherche est un type d'algorithme qui, pour un domaine, un problème de ce domaine et des critères donnés, retourne en résultat un ensemble de solutions répondant au problème. Supposons que l'ensemble de ses entrées soit divisible en sous-ensemble, par rapport à un critère donné, qui peut être, par exemple, une relation d'ordre. De façon générale, un tel algorithme vérifie un certain nombre de ces entrées et retourne en sortie une ou plusieurs des entrées visées.
Maximum cardinality matchingMaximum cardinality matching is a fundamental problem in graph theory. We are given a graph G, and the goal is to find a matching containing as many edges as possible; that is, a maximum cardinality subset of the edges such that each vertex is adjacent to at most one edge of the subset. As each edge will cover exactly two vertices, this problem is equivalent to the task of finding a matching that covers as many vertices as possible.
Graphe biparti completEn théorie des graphes, un graphe est dit biparti complet (ou encore est appelé une biclique) s'il est biparti et chaque sommet du premier ensemble est relié à tous les sommets du second ensemble. Plus précisément, il existe une partition de son ensemble de sommets en deux sous-ensembles et telle que chaque sommet de est relié à chaque sommet de . Si le premier ensemble est de cardinal m et le second ensemble est de cardinal n, le graphe biparti complet est noté . Si m = 1, le graphe complet biparti K1,n est une étoile et est noté .
Test de planaritéEn théorie des graphes, le problème du test de planarité est le problème algorithmique qui consiste à tester si un graphe donné est un graphe planaire (c'est-à-dire s'il peut être dessiné dans le plan sans intersection d'arêtes). Il s'agit d'un problème bien étudié en informatique pour lequel de nombreux algorithmes pratiques ont été donnés, souvent en décrivant de nouvelles structures de données. La plupart de ces méthodes fonctionnent en temps O(n) (temps linéaire), où n est le nombre d'arêtes (ou de sommets) du graphe, ce qui est asymptotiquement optimal.
Réseau de flotEn théorie des graphes, un réseau de flot (aussi appelé réseau de transport) est un graphe orienté où chaque arête possède une capacité et peut recevoir un flot (ou flux). Le cumul des flots sur une arête ne peut pas excéder sa capacité. Un graphe orienté est souvent appelé réseau en recherche opérationnelle. Les sommets sont alors appelés des nœuds et les arêtes des arcs. Pour qu'un flot soit valide, il faut que la somme des flots atteignant un nœud soit égale à la somme des flots quittant ce nœud, sauf s'il s'agit d'une source (qui n'a pas de flot entrant), ou d'un puits (qui n'a pas de flot sortant).
Algorithme gloutonUn algorithme glouton (greedy algorithm en anglais, parfois appelé aussi algorithme gourmand, ou goulu) est un algorithme qui suit le principe de réaliser, étape par étape, un choix optimum local, afin d'obtenir un résultat optimum global. Par exemple, dans le problème du rendu de monnaie (donner une somme avec le moins possible de pièces), l'algorithme consistant à répéter le choix de la pièce de plus grande valeur qui ne dépasse pas la somme restante est un algorithme glouton.
Rainbow matchingIn the mathematical discipline of graph theory, a rainbow matching in an edge-colored graph is a matching in which all the edges have distinct colors. Given an edge-colored graph G = (V,E), a rainbow matching M in G is a set of pairwise non-adjacent edges, that is, no two edges share a common vertex, such that all the edges in the set have distinct colors. A maximum rainbow matching is a rainbow matching that contains the largest possible number of edges. Rainbow matchings are of particular interest given their connection to transversals of Latin squares.
Complexité en tempsEn algorithmique, la complexité en temps est une mesure du temps utilisé par un algorithme, exprimé comme fonction de la taille de l'entrée. Le temps compte le nombre d'étapes de calcul avant d'arriver à un résultat. Habituellement, le temps correspondant à des entrées de taille n est le temps le plus long parmi les temps d’exécution des entrées de cette taille ; on parle de complexité dans le pire cas. Les études de complexité portent dans la majorité des cas sur le comportement asymptotique, lorsque la taille des entrées tend vers l'infini, et l'on utilise couramment les notations grand O de Landau.
Matching in hypergraphsIn graph theory, a matching in a hypergraph is a set of hyperedges, in which every two hyperedges are disjoint. It is an extension of the notion of matching in a graph. Recall that a hypergraph H is a pair (V, E), where V is a set of vertices and E is a set of subsets of V called hyperedges. Each hyperedge may contain one or more vertices. A matching in H is a subset M of E, such that every two hyperedges e_1 and e_2 in M have an empty intersection (have no vertex in common).