Graphe orientéthumb|Un graphe orienté .(Figure 1) Dans la théorie des graphes, un graphe orienté est un couple formé de un ensemble, appelé ensemble de nœuds et un ensemble appelé ensemble d'arêtes. Les arêtes sont alors nommées arcs, chaque arête étant un couple de noeuds, représenté par une flèche. Étant donné un arc , on dit que est l'origine (ou la source ou le départ ou le début) de et que est la cible (ou l'arrivée ou la fin) de . Le demi-degré extérieur (degré sortant) d'un nœud, noté , est le nombre d'arcs ayant ce nœud pour origine.
Graphe (mathématiques discrètes)Dans le domaine des mathématiques discrètes, la théorie des graphes définit le graphe, une structure composée d'objets et de relations entre deux de ces objets. Abstraitement, lesdits objets sont appelés sommets (ou nœuds ou points), et les relations entre eux sont nommées arêtes (ou liens ou lignes). On distingue les graphes non orientés, où les arêtes relient deux sommets de manière symétrique, et les graphes orientés, où les arêtes, alors appelées arcs (ou flèches), relient deux sommets de manière asymétrique.
Graphe orienté acycliqueEn théorie des graphes, un graphe orienté acyclique (en anglais directed acyclic graph ou DAG), est un graphe orienté qui ne possède pas de circuit. Un tel graphe peut être vu comme une hiérarchie. Un graphe orienté acyclique est un graphe orienté qui ne possède pas de circuit. On peut toujours trouver un sous-graphe couvrant d’un graphe orienté acyclique qui soit un arbre (resp. une forêt). Dans un graphe orienté acyclique, la relation d'accessibilité R(u, v) définie par « il existe un chemin de u à v » est une relation d'ordre partielle.
Théorie des graphesvignette|Un tracé de graphe. La théorie des graphes est la discipline mathématique et informatique qui étudie les graphes, lesquels sont des modèles abstraits de dessins de réseaux reliant des objets. Ces modèles sont constitués par la donnée de sommets (aussi appelés nœuds ou points, en référence aux polyèdres), et d'arêtes (aussi appelées liens ou lignes) entre ces sommets ; ces arêtes sont parfois non symétriques (les graphes sont alors dits orientés) et sont alors appelées des flèches ou des arcs.
Base de données orientée grapheUne base de données orientée graphe est une base de données orientée objet utilisant la théorie des graphes, donc avec des nœuds et des arcs, permettant de représenter et stocker les données. Par définition, une base de données orientée graphe correspond à un système de stockage capable de fournir une adjacence entre éléments voisins : chaque voisin d'une entité est accessible grâce à un pointeur physique. C'est une base de données orientée objet adaptée à l'exploitation des structures de données de type graphe ou dérivée, comme des arbres.
Graphe (type abstrait)thumb|upright=1.3|Un graphe orienté, dont les arcs et certains sommets sont « valués » par des couleurs. En informatique, et plus particulièrement en génie logiciel, le type abstrait graphe est la spécification formelle des données qui définissent l'objet mathématique graphe et de l'ensemble des opérations qu'on peut effectuer sur elles. On qualifie d'« abstrait » ce type de données car il correspond à un cahier des charges qu'une structure de données concrète doit ensuite implémenter.
Line graphEn théorie des graphes, le line graph L(G) d'un graphe non orienté G, est un graphe qui représente la relation d'adjacence entre les arêtes de G. Le nom line graph vient d'un article de Harary et Norman publié en 1960. La même construction avait cependant déjà été utilisée par Whitney en 1932 et Krausz en 1943. Il est également appelé graphe adjoint. Un des premiers et des plus importants théorèmes sur les line graphs est énoncé par Hassler Whitney en 1932, qui prouve qu'en dehors d'un unique cas exceptionnel, la structure de G peut être entièrement retrouvée à partir de L(G) dans le cas des graphes connexes.
Graphe cycleLes graphes cycles, ou n-cycles, forment une famille de graphes. Le graphe cycle est constitué d'un unique cycle élémentaire de longueur n (pour ). C'est un graphe connexe non-orienté d'ordre n à n arêtes. Il est 2-régulier, c'est-à-dire que chacun de ses sommets est de degré 2. Beaucoup de termes sont employés pour désigner le graphe cycle : n-cycle, polygone et n-gone. Le terme de graphe cyclique est parfois employé, mais il pose problème car il s'oppose normalement à graphe acyclique. Nombre chromatique.
Feedback arc setvignette|Ce graphe orienté n'a pas de circuits: il n'est pas possible de partir d'un sommet quelconque et de revenir à ce même point, en suivant les connexions dans la direction indiquée par les flèches. En théorie des graphes, un graphe orienté peut contenir des circuits, c'est-à-dire des chemins qui reviennent sur leur point de départ. Dans certaines applications, ces circuits sont indésirables, et on cherche à les éliminer pour obtenir un graphe orienté acyclique (souvent abrégé en DAG).
Cycle (théorie des graphes)thumb|Dans ce graphe, le cycle rouge est élémentaire. Le cycle bleu ne l'est pas. La chaine verte n'est pas fermée et ne forme donc pas un cycle. Dans un graphe non orienté, un cycle est une suite d'arêtes consécutives distinctes (chaine simple) dont les deux sommets extrémités sont identiques. Dans les graphes orientés, la notion équivalente est celle de circuit, même si on parle parfois aussi de cycle (par exemple dans l'expression graphe acyclique orienté).