Algorithme de KruskalEn informatique, l'algorithme de Kruskal est un algorithme de recherche d'arbre recouvrant de poids minimum (ARPM) ou arbre couvrant minimum (ACM) dans un graphe connexe non-orienté et pondéré. Il a été conçu en 1956 par Joseph Kruskal. On considère un graphe connexe non-orienté et pondéré : chaque arête possède un poids qui est un nombre qui représente le coût de cette arête. Dans un tel graphe, un arbre couvrant est un sous-graphe connexe sans cycle qui contient tous les sommets du graphe.
Pseudo-forêtvignette|upright=1.2 |Une 1-forêt (une pseudo-forêt maximale), composée de trois 1-arbres En théorie des graphes, une pseudo-forêt est un graphe non orienté, ou même un multigraphe dans lequel chaque composante connexe possède au plus un cycle. De manière équivalente, une pseudo-forêt est un graphe dans lequel deux cycles ne sont pas connectés par une chaîne. Un pseudo-arbre est une pseudo-forêt connexe. Les noms évoquent l'analogie avec les arbres et les forêts plus couramment étudiés : un arbre est un graphe connexe sans cycle ; une forêt est une union disjointe d'arbres.
Line graphEn théorie des graphes, le line graph L(G) d'un graphe non orienté G, est un graphe qui représente la relation d'adjacence entre les arêtes de G. Le nom line graph vient d'un article de Harary et Norman publié en 1960. La même construction avait cependant déjà été utilisée par Whitney en 1932 et Krausz en 1943. Il est également appelé graphe adjoint. Un des premiers et des plus importants théorèmes sur les line graphs est énoncé par Hassler Whitney en 1932, qui prouve qu'en dehors d'un unique cas exceptionnel, la structure de G peut être entièrement retrouvée à partir de L(G) dans le cas des graphes connexes.
Analyse amortieEn informatique, l'analyse amortie est une méthode d'évaluation de la complexité temporelle des opérations sur une structure de données. Cette analyse résulte en une classification des algorithmes et conduit à une théorie spécifique de la complexité des algorithmes que l'on appelle complexité amortie. L'analyse amortie consiste essentiellement à majorer le coût cumulé d'une suite d'opérations pour attribuer à chaque opération la moyenne de cette majoration, en prenant en compte le fait que les cas chers surviennent rarement et isolément et compensent les cas bon marché.
Schéma d'approximation en temps entièrement polynomialUn schéma d'approximation en temps entièrement polynomial (FPTAS, pour ) est un algorithme permettant de trouver des solutions approximatives aux problèmes fonctionnels, en particulier aux problèmes d'optimisation. Un FPTAS prend en entrée une instance du problème et un paramètre ε > 0. Il renvoie en sortie une valeur d'au moins fois la valeur correcte, et au plus fois la valeur correcte. Dans le contexte des problèmes d'optimisation, ce qu'on appelle valeur correcte est la valeur de la solution optimale.
Complexité en moyenne des algorithmesLa complexité en moyenne d'un algorithme est la quantité d'une ressource donnée, typiquement le temps, utilisée par l'algorithme lors de son exécution pour traiter une entrée tirée selon une distribution donnée. Il s'agit par conséquent d'une moyenne de la complexité, pondérée entre les différentes entrées possibles selon la distribution choisie. Le plus souvent, on ne précise pas la distribution et on utilise implicitement une distribution uniforme (i.e.
Coloration de graphethumb|Une coloration du graphe de Petersen avec 3 couleurs. En théorie des graphes, la coloration de graphe consiste à attribuer une couleur à chacun de ses sommets de manière que deux sommets reliés par une arête soient de couleur différente. On cherche souvent à utiliser le nombre minimal de couleurs, appelé nombre chromatique. La coloration fractionnaire consiste à chercher non plus une mais plusieurs couleurs par sommet et en associant des coûts à chacune.
Algorithme de DijkstraEn théorie des graphes, l'algorithme de Dijkstra (prononcé ) sert à résoudre le problème du plus court chemin. Il permet, par exemple, de déterminer un plus court chemin pour se rendre d'une ville à une autre connaissant le réseau routier d'une région. Plus précisément, il calcule des plus courts chemins à partir d'une source vers tous les autres sommets dans un graphe orienté pondéré par des réels positifs. On peut aussi l'utiliser pour calculer un plus court chemin entre un sommet de départ et un sommet d'arrivée.
Algorithme de BorůvkaLalgorithme de Borůvka, est un algorithme de recherche de l'arbre couvrant de poids minimal dans un graphe pondéré. Il est aussi appelé algorithme de Sollin'. En théorie des graphes, étant donné un graphe non orienté connexe dont les arêtes sont pondérées, un arbre couvrant de poids minimal de ce graphe est un arbre couvrant (sous-ensemble qui est un arbre et qui connecte tous les sommets ensemble) dont la somme des poids des arêtes est minimale.
Best, worst and average caseIn computer science, best, worst, and average cases of a given algorithm express what the resource usage is at least, at most and on average, respectively. Usually the resource being considered is running time, i.e. time complexity, but could also be memory or some other resource. Best case is the function which performs the minimum number of steps on input data of n elements. Worst case is the function which performs the maximum number of steps on input data of size n.