Section efficaceEn physique nucléaire ou en physique des particules, la section efficace est une grandeur physique reliée à la probabilité d'interaction d'une particule pour une réaction donnée. La section efficace étant homogène à une surface, l'unité de section efficace du Système international est le mètre carré. En pratique on utilise souvent le barn, de symbole b : = = , soit la surface d'un carré de dix femtomètres de côté (du même ordre de grandeur que le diamètre d'un noyau atomique).
Température neutroniquevignette|400px|Graphique des fonctions de densité de probabilité de vitesse de la vitesse de quelques gaz nobles à une température de (). Des distributions de vitesse similaires sont obtenues pour des neutrons modérés. La température neutronique, aussi appelée par métonymie « énergie des neutrons », est l'énergie cinétique moyenne d'un neutron libre dans sa population, énergie qui est habituellement donnée en électron-volts (abréviation eV et ses multiples, keV, MeV), la température étant en kelvins (K) ou en degrés Celsius (°C).
Nuclear magnetic resonance spectroscopy of proteinsNuclear magnetic resonance spectroscopy of proteins (usually abbreviated protein NMR) is a field of structural biology in which NMR spectroscopy is used to obtain information about the structure and dynamics of proteins, and also nucleic acids, and their complexes. The field was pioneered by Richard R. Ernst and Kurt Wüthrich at the ETH, and by Ad Bax, Marius Clore, Angela Gronenborn at the NIH, and Gerhard Wagner at Harvard University, among others.
Spectroscopie RMNvignette|redresse|Spectromètre RMN avec passeur automatique d'échantillons utilisé en chimie organique pour la détermination des structures chimiques. vignette|redresse|Animation présentant le principe de la Résonance Magnétique Nucléaire (RMN). La spectroscopie RMN est une technique qui exploite les propriétés magnétiques de certains noyaux atomiques. Elle est basée sur le phénomène de résonance magnétique nucléaire (RMN), utilisé également en sous le nom d’.
Nuclear cross sectionThe nuclear cross section of a nucleus is used to describe the probability that a nuclear reaction will occur. The concept of a nuclear cross section can be quantified physically in terms of "characteristic area" where a larger area means a larger probability of interaction. The standard unit for measuring a nuclear cross section (denoted as σ) is the barn, which is equal to e-28m2, e-24cm2 or 100fm2.
FluxonUn fluxon est, en physique, une quasi-particule décrivant un quantum de flux électromagnétique. Les fluxons sont similaires aux mésons du point de vue de leurs propriétés. Les fluxons existent sous deux états : les fluxons électriques et les fluxons magnétiques. Les fluxons électriques possèdent un spin +1⁄2 et les fluxons magnétiques ont un spin -1⁄2. Les fluxons exercent sur leur environnement une force dépendante de leur spin qui peut être déterminée par les lois de Coulomb et de Biot-Savart.
Imagerie par résonance magnétiqueL'imagerie par résonance magnétique (IRM) est une technique d' permettant d'obtenir des vues en deux ou en trois dimensions de l'intérieur du corps de façon non invasive avec une résolution en contraste relativement élevée. L'IRM repose sur le principe de la résonance magnétique nucléaire (RMN) qui utilise les propriétés quantiques des noyaux atomiques pour la spectroscopie en analyse chimique. L'IRM nécessite un champ magnétique puissant et stable produit par un aimant supraconducteur qui crée une magnétisation des tissus par alignement des moments magnétiques de spin.
Réseau réciproqueEn cristallographie, le réseau réciproque d'un réseau de Bravais est l'ensemble des vecteurs tels que : pour tous les vecteurs position du réseau de Bravais. Ce réseau réciproque est lui-même un réseau de Bravais, et son réseau réciproque est le réseau de Bravais de départ. Un cristal peut se décrire comme un réseau aux nœuds duquel se trouvent des motifs : atome, ion, molécule. Si l'on appelle les vecteurs définissant la maille élémentaire, ces vecteurs définissent une base de l'espace.
Magnetic flux quantumThe magnetic flux, represented by the symbol Φ, threading some contour or loop is defined as the magnetic field B multiplied by the loop area S, i.e. Φ = B ⋅ S. Both B and S can be arbitrary, meaning Φ can be as well. However, if one deals with the superconducting loop or a hole in a bulk superconductor, the magnetic flux threading such a hole/loop is quantized. The (superconducting) magnetic flux quantum Φ0 = h/(2e) ≈ is a combination of fundamental physical constants: the Planck constant h and the electron charge e.
Circuit magnétiqueUn circuit magnétique est un circuit généralement réalisé en matériau ferromagnétique au travers duquel circule un flux de champ magnétique. Le champ magnétique est généralement créé soit par des enroulements enserrant le circuit magnétique et traversés par des courants, soit par des aimants contenus dans le circuit magnétique. Lorsque plusieurs circuits électriques sont bobinés autour d'un même circuit magnétique, ils constituent des circuits magnétiquement couplés. Il est constitué d'un assemblage de pièces en matériaux ferromagnétiques.