Transformation de Fourierthumb|Portrait de Joseph Fourier. En mathématiques, plus précisément en analyse, la transformation de Fourier est une extension, pour les fonctions non périodiques, du développement en série de Fourier des fonctions périodiques. La transformation de Fourier associe à toute fonction intégrable définie sur R et à valeurs réelles ou complexes, une autre fonction sur R appelée transformée de Fourier dont la variable indépendante peut s'interpréter en physique comme la fréquence ou la pulsation.
Transformation de Fourier discrèteEn mathématiques, la transformation de Fourier discrète (TFD) sert à traiter un signal numérique. Elle constitue un équivalent discret (c'est-à-dire pour un signal défini à partir d'un nombre fini d'échantillons) de la transformation de Fourier (continue) utilisée pour traiter un signal analogique. Plus précisément, la TFD est la représentation spectrale discrète dans le domaine des fréquences d'un signal échantillonné. La transformation de Fourier rapide est un algorithme particulier de calcul de la transformation de Fourier discrète.
Fourier analysisIn mathematics, Fourier analysis (ˈfʊrieɪ,_-iər) is the study of the way general functions may be represented or approximated by sums of simpler trigonometric functions. Fourier analysis grew from the study of Fourier series, and is named after Joseph Fourier, who showed that representing a function as a sum of trigonometric functions greatly simplifies the study of heat transfer. The subject of Fourier analysis encompasses a vast spectrum of mathematics.
Signal en dents de sciethumb|Signal en dents de scie thumb|Les cinq premières sommes partielles de sa série de Fourier thumb|Synthèse additive d'une onde en dents de scie Un signal en dents de scie est une sorte d'onde non-sinusoïdale que l'on rencontre en électronique, ou dans le domaine du traitement du signal. Il tire son nom de sa représentation graphique qui se rapproche des dents d'une scie. Une onde en dents de scie peut être construite en utilisant la synthèse additive : la série de Fourier converge vers une onde en dents de scie de fréquence f.
Transformation de Fourier rapideLa transformation de Fourier rapide (sigle anglais : FFT ou fast Fourier transform) est un algorithme de calcul de la transformation de Fourier discrète (TFD). Sa complexité varie en O(n log n) avec le nombre n de points, alors que la complexité de l’algorithme « naïf » s'exprime en O(n). Ainsi, pour n = , le temps de calcul de l'algorithme rapide peut être 100 fois plus court que le calcul utilisant la formule de définition de la TFD.
Spectroscopie par transformée de FourierLa spectroscopie par transformée de Fourier est une technique de mesure par laquelle les spectres sont collectés sur la base de mesures de la cohérence d'une source radiative, utilisant le domaine temporel ou le domaine spatial des rayonnements électromagnétiques ou autre. Elle peut être appliquée à plusieurs types de spectroscopie dont la spectroscopie optique, la spectroscopie infrarouge (FTIR, FT-NIRS), la résonance magnétique nucléaire (RMN) et l'imagerie spectroscopique à résonance magnétique (MRSI), la spectrométrie de masse et la spectroscopie par résonance paramagnétique électronique.
Spectroscopie infrarouge à transformée de FourierLa spectroscopie infrarouge à transformée de Fourier ou spectroscopie IRTF (ou encore FTIR, de l'anglais Fourier Transform InfraRed spectroscopy) est une technique utilisée pour obtenir le spectre d'absorption, d'émission, la photoconductivité ou la diffusion Raman dans l'infrarouge d'un échantillon solide, liquide ou gazeux. Un spectromètre FTIR permet de collecter simultanément les données spectrales sur un spectre large.
Discrete-time Fourier transformIn mathematics, the discrete-time Fourier transform (DTFT), also called the finite Fourier transform, is a form of Fourier analysis that is applicable to a sequence of values. The DTFT is often used to analyze samples of a continuous function. The term discrete-time refers to the fact that the transform operates on discrete data, often samples whose interval has units of time. From uniformly spaced samples it produces a function of frequency that is a periodic summation of the continuous Fourier transform of the original continuous function.
Signal carrévignette|Formes d'onde sinusoïdale, carrée, triangulaire et en dents de scie. Un signal carré est une sorte d'onde non–sinusoïdale que l'on rencontre le plus souvent en électronique ou dans le cas du traitement du signal. Un signal carré idéal alternerait régulièrement et instantanément entre deux niveaux. On peut obtenir de tels signaux à l'aide d'un générateur de créneaux. On rencontre couramment les signaux carrés dans les circuits de commutation numérique et dans les systèmes binaires logiques où ils sont tout naturellement générés.
Multidimensional transformIn mathematical analysis and applications, multidimensional transforms are used to analyze the frequency content of signals in a domain of two or more dimensions. One of the more popular multidimensional transforms is the Fourier transform, which converts a signal from a time/space domain representation to a frequency domain representation. The discrete-domain multidimensional Fourier transform (FT) can be computed as follows: where F stands for the multidimensional Fourier transform, m stands for multidimensional dimension.