This paper proposes a data-driven control design method for nonlinear systems that builds upon the Koopman operator framework. In particular, the Koopman operator is used to lift the nonlinear dynamics to a higher-dimensional space where the so-called obse ...
Modern power distribution systems are experiencing a large-scale integration of Converter-Interfaced Distributed Energy Resources (CIDERs). Their presence complicates the analysis and mitigation of harmonics, whose creation and propagation may be amplified ...
Implanted medical devices (IMDs) have been widely developed to support the monitoring and recording of biological data inside the body or brain. Wirelessly powered IMDs, a subset of implantable electronics, have been proposed to eliminate the limitations r ...
The decentralisation and unpredictability of new renewable energy sources require rethinking our energy system. Data-driven approaches, such as reinforcement learning (RL), have emerged as new control strategies for operating these systems, but they have n ...
In control system networks, reconfiguration of the controller when agents are leaving or joining the network is still an open challenge, in particular when operation constraints that depend on each agent's behavior must be met. Drawing our motivation from ...
Control systems operating in real-world environments often face disturbances arising from measurement noise and model mismatch. These factors can significantly impact the perfor- mance and safety of the system. In this thesis, we aim to leverage data to de ...