We study analytically and numerically the bounds imposed by the electroweak precision tests on a minimal composite Higgs model. The model is based on spontaneous SO(5) -> SO(4) breaking, so that an approximate custodial symmetry is preserved. The Higgs arises as a pseudo-Goldstone boson at a scale below the electroweak symmetry breaking scale. We show that one can satisfy the electroweak precision constraints without much fine-tuning. This is the case if the left-handed top quark is fully composite, which gives a mass spectrum within the reach of the LHC. However a composite top quark is strongly disfavored by flavor physics. The alternative is to have a singlet top partner at a scale much lighter than the rest of the composite fermions. In this case the top partner would be light enough to be produced significantly at the LHC.
Matthias Finger, Konstantin Androsov, Jan Steggemann, Qian Wang, Anna Mascellani, Yiming Li, Varun Sharma, Xin Chen, Rakesh Chawla, Matteo Galli
Matthias Finger, Konstantin Androsov, Jan Steggemann, Qian Wang, Anna Mascellani, Yiming Li, Varun Sharma, Xin Chen, Rakesh Chawla, Matteo Galli