**Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?**

Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur GraphSearch.

Concept# Chiral symmetry breaking

Résumé

In particle physics, chiral symmetry breaking is the spontaneous symmetry breaking of a chiral symmetry – usually by a gauge theory such as quantum chromodynamics, the quantum field theory of the strong interaction. Yoichiro Nambu was awarded the 2008 Nobel prize in physics for describing this phenomenon ("for the discovery of the mechanism of spontaneous broken symmetry in subatomic physics").
Overview
Quantum chromodynamics
Quantum chromodynamics and QCD vacuum
Experimentally, it is observed that the masses of the octet of pseudoscalar mesons (such as the pion) are much lighter than the next heavier states such as the octet of vector mesons, such as rho meson.
This is a consequence of spontaneous symmetry breaking of chiral symmetry in a fermion sector of QCD with 3 flavors of light quarks, u, d, and s . Such a theory, for idealized massless quarks, has global SU(3) × SU(3) chiral flavor symmetry. Under SSB, this is spontaneously broken to the diag

Source officielle

Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Publications associées

Chargement

Personnes associées

Chargement

Unités associées

Chargement

Concepts associés

Chargement

Cours associés

Chargement

Séances de cours associées

Chargement

Publications associées (14)

Chargement

Chargement

Chargement

Unités associées

Aucun résultat

Personnes associées

Aucun résultat

Concepts associés (28)

Chromodynamique quantique

La chromodynamique quantique (en abrégé CDQ ou QCD, ce dernier de l'anglais Quantum ChromoDynamics) est une théorie physique qui décrit l’interaction forte, l’une des quatre forces fondamentales, qu

Pion (particule)

Un pion ou méson pi est une des trois particules : π, π+ ou π−. Ce sont les particules les plus légères de la famille des mésons.
Elles jouent un rôle important dans l'explication des propriétés à ba

Chirality (physics)

A chiral phenomenon is one that is not identical to its (see the article on mathematical chirality). The spin of a particle may be used to define a handedness, or helicity, for that particle, which,

Cours associés (3)

PHYS-416: Particle physics II

Presentation of the electroweak and strong interaction theories that constitute the Standard Model of particle physics. The course also discusses the new theories proposed to solve the problems of the Standard Model.

PHYS-817: Supersymmetry

Supersymmetry is the unique quantum extension of the symmetry principles of relativity.
This course offers a first but broad introduction covering the role of Supersymmetry in our understanding of both physics beyond the Standard Model and non-perturbative phenomena in quantum field theory.

PHYS-756: Lectures on twisted bilayer graphene

Twisted Bilayer Graphene (TBG) is a change of paradigm in condensed matter: with flat topologic bands, it provides a platform for unconventional superconductivity, correlated insulation, Plankian metal phase, etc. This course will provide rigorous yet pedagocical introduction to the topic.

Séances de cours associées (5)

The main topics discussed in this thesis are supersymmetric low-energy effective theories and metastability conditions in generic non-renormalizable models with global and local supersymmetry. In the first part we discuss the conditions under which the low-energy expansion in space-time derivatives preserves supersymmetry implying that heavy multiplets can be more efficiently integrated out directly at the superfield level. These conditions translate into the requirements that also fermions and auxiliary fields should be small compared to the heavy mass scale. They apply not only to the matter sector, but also to the gravitational one if present, and imply in that case that the gravitino mass should be small. We finally give a simple prescription to integrate out heavy chiral and vector superfields consisting respectively in imposing stationarity of the superpotential and of the Kähler potential; the procedure holds in the same form both for global and local supersymmetry. In the second part we study general criteria for the existence of metastable vacua which break global supersymmetry in models with local gauge symmetries. In particular we present a strategy to define an absolute upper bound on the mass of the lightest scalar field which depends on the geometrical properties of the Kähler target manifold. This bound can be saturated by properly tuning the superpotential and its positivity therefore represents a necessary and sufficient condition for the existence of metastable vacua. It is derived by looking at the subspace of all those directions in field space for which an arbitrary supersymmetric mass term is not allowed and scalar masses are controlled by supersymmetry-breaking splitting effects. This subspace includes not only the direction of supersymmetry breaking, but also the directions of gauge symmetry breaking and the lightest scalar is in general a linear combination of fields spanning all these directions. Our purpose is to show that the largest value for the lightest mass is in general achieved when the lightest scalar is a combination of the Goldstone and the Goldstino partners. We conclude by computing the effects induced by the integration of heavy multiplets on the light masses. In particular we focus on the sGoldstino partners and we show that heavy chiral multiplets induce a negative level-repulsion effect that tends to compromise vacuum stability, whereas heavy vector multiplets in general induce a positive-definite contribution. Our results find application in the context of string-inspired supergravity models, where metastability conditions can be used to discriminate among different compactification scenarios and supersymmetric effective theories can be used to face the problem of moduli stabilization.

Christopher John Andrey, Claudio Scrucca

We elaborate on the idea that five-dimensional models where sequestering is spoiled due to contact interactions induced by vector multiplets may still be mildly sequestered if a global version of the gauge symmetry associated to the latter survives in the hidden sector. Interestingly, it has been argued that although in such a situation non-trivial current current contact interactions are induced by the heavy vector modes, these do not induce soft scalar masses, as a consequence of the global symmetry. We perform a detailed study of how this hybrid mechanism can be implemented in supergravity and string models, focusing on the prototypical case of heterotic M-theory orbifolds. We emphasize that in general the mechanism works only up to subleading effects suppressed by the ratio between the global symmetry breaking scale in the hidden sector and the vector mass scale or the Planck scale. We also argue that this mild sequestering mechanism allows to rehabilitate the scenario of dilaton domination of supersymmetry breaking, which is incompatible with dilaton stabilization in its original version, by exploiting the fact that hidden brane fields do contribute to the cosmological constant but not to soft terms, thanks to the global symmetry. (C) 2010 Elsevier B.V. All rights reserved.

2010