The present PhD thesis deals with the high temperature polymerization of methyl methacrylate in a continuous pilot scale process. The major aim is to investigate the feasibility of a polymerization process for the production of PMMA molding compound at temperatures in the range from 140 °C to 170 °C. Increasing the process temperature has the advantage of decreasing molecular weight and viscosity of the reaction mixture, thus allowing to reduce the addition of chain transfer agent and to increase the polymer content in the reactor. At the same time, the reaction rates are higher and the devolatilization is facilitated compared to low conversion polymerizations. Altogether, it leads to an improved space time yield of the process. However, increasing the process temperature also has an important impact on both, polymerization kinetics and polymer properties. The first two parts of this work are, therefore, dedicated to the self-initiation respectively the high temperature gel effect observed for the polymerization of MMA at the given temperature range. The self-initiation of MMA is mostly caused by polymeric peroxides that form from physically dissolved oxygen and the monomer, itself. The formation, decomposition and constitution of these peroxides are intensively studied and a formal kinetic is proposed for the formation and decomposition reaction. The polymerization of MMA is subject to a rather strong auto-acceleration, called gel effect, the intensity of which depends on process conditions and solvent content. There are several models proposed in the specialized literature to describe this phenomenon by modifying the termination rate constant as a function of conversion and temperature. The second part of this study contains the evaluation of these models with regards to their applicability to high temperature MMA polymerization as well as the development of a new variant of an existing model, which correctly describes the gel effect in the temperature range of interest as a function of polymer content, temperature and molecular weight. The advantage of this new variant is that it includes all other factors influencing the gel effect, i.e. chain transfer agent, initiator load, comonomer and solvent content, and that it is suitable for the description of batch and continuous processes. A complete kinetic model for the description of the high temperature copolymerization of MMA and MA, containing the results from the first two parts of this work, is established within the software package PREDICI® and validated by means of several series of batch polymerizations. In the third part of this work, a complete pilot plant installation for the continuous polymerization of MMA is designed and constructed in order to study the impact of increasing the reaction temperature on process properties and product quality under conditions similar to those of an industrial-scale polymerization. The pilot plant is based on a combination of recycle loop and consecut
Jürgen Brugger, Thomas Maeder, Mohammadmahdi Kiaee